首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study is concerned with the chemical factors that determine the inhibitory properties of reversible aromatic sulfonic acids on sulfate exchange system of human red blood cells. Two series of compounds were tested for in hibitory potencies: benzene sulfonic acid (BS) and 2,2′-disulfonic stilbene (DS) derivatives, each series with substituent groups such as C1, OH, NHz, NOz, N″, N-acetamido, and N-benzoamido. As judged by various kinetic criteria, all congeners of BS and DS appear to have common sites of action in the anion transport system. The range of inhibitory potencies, as defined by the concentration required to produce 50% inhibition (ID50), varied over a lo4 range (ID5,: 2-50,000 PM). The degree of inhibition was correlated with two physicochemical properties of the substituent groups: (a) lipophilicity, as judged by the T values (Hansch factor) of the groups; and (b) the electronic character, as judged by u values (Hammett factor) of the groups. Optimal correlations were obtained with a linear combination of the two factors. Based on the above structure-activity relationships and on a comparison between the inhibitory properties of congeners of BS and DS, we suggest that the microenvironment of substrate recognition sites bears a positive multipolar character and possesses functionally essential groups with electron donor capacity embedded in a hydrophobic area.  相似文献   

2.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

3.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4′-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25°C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 ± 0.11) × 10-10 moles · min-1 · cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 ± 14 mM and for the modifier site KS' = 653 ± 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25°C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n ? 1), indicating a single site of inhibition for the two probes. The kinetics of sul- fate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate trans- port site was the target for the action of the inhibitors. The in- hibitory constants (Ki j for the transport sites were 0.45 ± 0.10 PM for DNDS and 0.21 ± 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus oper- andi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion trans- port sites are also the sites of inhibition and of labeling of co- valent binding analogs of BS and DS.  相似文献   

4.
A previous study has shown that a series of C6-benzyloxy substituted chromones exhibit high binding affinities for human monoamine oxidase (MAO) B. In an attempt to discover additional chromones with potent and selective MAO-B inhibitory potencies and to further examine the structure-activity relationships of MAO-B inhibition by chromones, the series was expanded with homologues containing polar functional groups on C3 of the chromone ring. The results demonstrate that 6-[(3-bromobenzyl)oxy]chromones containing acidic and aldehydic functional groups on C3 act as potent reversible MAO-B inhibitors with IC(50) values of 2.8 and 3.7nM, respectively. Interestingly, a 2-hydroxy-2,3-dihydro-1-benzopyran-4-one derivative as well as open-ring 2-acetylphenol analogues of the chromones also were potent MAO-B inhibitors with IC(50) values ranging from 4 to 11nM. Chromone derivatives containing the benzyloxy substituent on C5 of the chromone ring, however, exhibit MAO-B inhibition potencies that are several orders of magnitude weaker. High potency inhibitors of MAO-B may find application in the therapy of neurodegenerative disorders such as Parkinson's disease.  相似文献   

5.
C G Pick  D Paul  G W Pasternak 《Life sciences》1991,48(21):2005-2011
beta-Funaltrexamine (beta-FNA) irreversibly blocks morphine analgesia, lethality and its inhibition of gastrointestinal transit, confirming that these actions involve mu receptors. In dose-response studies, beta-FNA antagonized all the actions with similar potencies (ID50 values of 12.1, 11.3 and 12.3 mg/kg, respectively). beta-FNA also reduced intra-cerebroventricular and intrathecal DAMGO analgesia equally well (ID50 values of 6.09 and 7.7 mg/kg, respectively). Naloxanazine blocked systemic morphine analgesia (ID50 value 9.5 mg/kg) and supraspinal DAMGO analgesia (ID50 value 6.1 mg/kg) as potently as beta-FNA. However, against spinal DAMGO analgesia, morphine's inhibition of gastro-intestinal transit or lethality, naloxonazine (ID50 values 38.8, 40.7 and 40.9 mg/kg, respectively) was significantly less active than beta-FNA (p less than 0.05). beta-FNA remains a valuable tool in the classification of mu opioid actions. Within the mu category, actions can be defined as either mu 1 (naloxonazine-sensitive) or mu 2 (naloxonazine-insensitive).  相似文献   

6.
The hepatitis C virus (HCV) NS3 protease has emerged as a promising anti-HCV drug target. Herein, we present an investigation of NS3 inhibitors comprising the acyl sulfonamide functionality. A series of tetra- and tripeptide based acyl sulfonamide inhibitors and their structure-activity relationships from both enzymatic and cell-based in vitro assays are presented. In summary, the acidity of the acyl sulfonamide functionality, the character of the P1 side chain, and the acyl sulfonamide substituent were found to be important for the inhibitory potencies.  相似文献   

7.
The neurotoxic agent, 3,3'-iminodiproprionitrile (IDPN), is a disrupter of neurofilament- and intermediate filament-organelle association. In the present study, the effect of IDPN on corticosteroidogenesis was investigated using isolated rat (having few intermediate filaments) and domestic fowl (having abundant intermediate filaments) adrenocortical cells. Cells were incubated with or without steroidogenic agents and precursors and with or without various concentrations of IDPN for 2 hr. IDPN had similar inhibitory potencies (as indicated by the half-maximal inhibitor concentrations (ID50 values] with both rat and domestic fowl cells despite their grossly different intermediate filament content. However, the average ID50 values of IDPN varied with the different steroidogenic agents and precursors used. The average IDPN ID50 values for maximal ACTH- and 8-bromo-cyclic AMP (8-Br-cAMP)-induced corticosterone production were equivalent (49.7 and 45.7 mM, respectively). However, the IDPN ID50 values for maximal ACTH-induced cAMP production, maximal 25-hydroxycholesterol- and pregnenolone-supported corticosterone production, and maximal ACTH- and 8-Br-cAMP-induced protein synthesis varied from 3.7 to 5.4 times the average ID50 values for maximal ACTH- and 8-Br-cAMP-induced corticosterone production. Thus, the inhibitory action of IDPN was not closely linked to the inhibition of ACTH-transmembrane signaling via cAMP, protein synthesis, and steroidogenic enzyme activity. The data suggest that IDPN inhibited corticosteroidogenesis at at a step after cAMP but before cholesterol side-chain cleavage and that the inhibition was not dependent on the presence of intermediate filaments.  相似文献   

8.
9.
A new series of organotelluranes were synthesized and investigated, and the structure-activity relationships in cysteine proteases inhibition were determined. It was possible to identify the relevance of structural components linked to the reactivity of these compounds as inhibitors. For example, dibromo-organotelluranes showed to be more reactive than dichloro-organotelluranes towards cysteine cathepsins V and S. Besides, no remarkable enantio-selectivity was verified. In general the achiral organotelluranes were more reactive than the chiral congeners against cysteine cathepsins V and S. A reactivity order for organochalcogenanes and cysteine cathepsins was proposed after the comparison of the inhibitory potencies of organotelluranes with the related organoselenanes.  相似文献   

10.
A series of novel macrocyclic urethanes incorporating a (R)-hydroxyethylamine isostere was designed and synthesized. Ring size and substituent efffects have been investigated. Cyclourethanes containing 14- to 16-membered rings exhibited low nanomolar inhibitory potencies against HIV-1 protease.  相似文献   

11.
The retro-inversion of the amide bond in kelatorphan and analogs, the first series of complete inhibitors of enkephalin metabolism, led to compounds highly efficient only against the neutral endopeptidase 24-11 (NEP). In order to increase the recognition of the aminopeptidase N (APN) and dipeptidylaminopeptidase (DAP), without loss of affinity for NEP, the malonyl group of these retro-inhibitors was replaced by diversely substituted succinyl moieties. All the molecules synthesized are highly efficient NEP inhibitors with Ki's in the 0.2-1 nM range, indicating that NEP possesses a relatively large and not very selective S'2 subsite. In contrast, inhibition of DAP activity is crucially dependent on the size and the position of the substituent in the succinyl moiety. Inhibitory potencies in the nanomolar range are obtained with compounds containing a benzyl group in the alpha-position related to the retro amide bond. Finally, a relatively modest inhibition of APN was observed with Ki's in the 0.5-1 microM range for compounds with benzyl or cyclohexyl group in P'2 position. However, these data demonstrate that efficient and complete inhibition of enkephalin degradation can be obtained with hydroxamate dipeptides containing a retro amide bond. The analgesic potency of the most active inhibitors was measured using the hot plate test in mice. Significant antinociceptive responses were obtained but these effects were rather weaker than those expected from the in vitro inhibitory potencies of these compounds on the three enkephalin-degrading enzymes.  相似文献   

12.
A series of novel macrocyclic amide-urethanes was designed and synthesized based upon the X-ray crystal structure of our lead inhibitor (1, OM99-2 with eight residues) bound to memapsin 2. Ring size and substituent effects have been investigated. Cycloamide-urethanes containing 14- to 16-membered rings exhibited low nanomolar inhibitory potencies against human brain memapsin 2 (beta-secretase).  相似文献   

13.
A new class of regioisomeric acyclic triaryl (Z)-olefins possessing a 3,5-di-tert-butyl-4-hydroxyphenyl (DTBHP) 5-lipoxygenase (5-LOX) pharmacophore that is vicinal to a para-methanesulfonylphenyl cyclooxygenase-2 (COX-2) pharmacophore were designed for evaluation as selective COX-2 and/or 5-LOX inhibitors. The target compounds were synthesized via a highly stereoselective McMurry olefination cross-coupling reaction. This key synthetic step afforded a (Z):(E) olefinic mixture with a predominance for the (Z)-olefin stereoisomer. Structure-activity studies for the (Z)-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-methanesulfonylphenyl)-1-phenylalk-1-ene regioisomers showed that COX-1 inhibition decreased, COX-2 inhibition increased, and the COX-2 selectivity index (SI) increased as the chain length of the alkyl substituent attached to the olefinic double bond was increased (Et-->n-butyl-->n-heptyl). In this group of compounds, inhibition of both 5-LOX and 15-LOX was dependent upon the length of the alkyl substituent with the hex-1-ene compound 9c having a n-butyl substituent exhibiting potent inhibition of both 5-LOX (IC50=0.3 microM) and 15-LOX (IC50=0.8 microM) relative to the inactive (IC50>10 microM) Et and n-heptyl analogs. Compound 9c is of particular interest since it also exhibits a dual inhibitory activity against the COX (COX-1 IC50=3.0 microM, and COX-2 IC50=0.36 microM, COX-2 SI=8.3) isozymes. A comparison of the relative inhibitory activities of the two groups of regioisomers investigated shows that the regioisomers in which the alkyl substituent is attached to the same olefinic carbon atom (C-2) as the para-methanesulfonylphenyl moiety generally exhibit a greater potency with respect to COX-2 inhibition. The 4-hydroxy substituent in the 3,5-di-tert-butyl-4-hydroxyphenyl moiety is essential for COX and LOX inhibition since 3,5-di-tert-butyl-4-acetoxyphenyl derivatives were inactive inhibitors. These structure-activity data indicate acyclic triaryl (Z)-olefins constitute a suitable template for the design of dual COX-2/LOX inhibitors.  相似文献   

14.
Interactions of certain naturally occurring, amphiphilic polypeptides with membranes were investigated. Mastoparan (wasp venom toxin), melittin (bee venom toxin), cardiotoxin (cobra venom toxin), and polymyxin B (antibacterial antibiotic) inhibited protein kinase C stimulated by phosphatidylserine bilayer or arachidonate monomer and blocked binding of [3H] phorbol 12,13-dibutyrate to protein kinase C in the presence of phosphatidylserine bilayer, with IC50 values (concentrations causing 50% inhibition) of 1-8 microM. Mastoparan and polymyxin B were much less inhibitory (IC50, 10-20 microM), whereas melittin and cardiotoxin were similarly inhibitory (IC50, 1-4 microM), when protein kinase C was activated instead by synaptosomal membrane. Kinetic analysis indicate that mastoparan inhibited protein kinase C, assayed using phosphatidylserine or synaptosomal membrane as the phospholipid cofactor, competitively with the phospholipid cofactor, in a mixed manner with CaCl2 or diacylglycerol, noncompetitively with histone, and uncompetitively with ATP, with apparent Ki values of 1.6-18.7 microM. Inhibition of Na,K-ATPase in the membrane by these polypeptides had relative potencies different from those for their inhibition of protein kinase C activated by the same membrane preparation; mastoparan and melittin inhibited the two activities with comparable potencies, but polymyxin B and cardiotoxin were far less effective in inhibiting Na,K-ATPase. The same relative inhibitory potencies of the polypeptides (melittin greater than mastoparan greater than polymyxin B) for inhibition of Na,K-ATPase were also noted for their inhibition of Ca2+/calmodulin-dependent protein kinase II, 86Rb uptake (Na+ pump) by HL60 cells and the phorbol ester-induced differentiation of the leukemia cells. These findings were consistent with discrete interactions of the polypeptides with functionally distinct sites on the membrane, leading to differential inhibition of biological activities associated with the membrane. Actions of certain polypeptides appeared to be more specific compared to those of lipid second messengers such as lyso-phosphatidylcholine and sphingosine, and the antineoplastic ether lipid analogs such as 1-O-octadecyl-2-methyl-rac-glycero-3-ophosphocholine.  相似文献   

15.
A group of acyclic 2-alkyl-1,1-diphenyl-2-(4-methylsulfonylphenyl)ethenes was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition structure-activity studies identified 1,1-diphenyl-2-(4-methylsulfonylphenyl)hex-1-ene as a highly potent (IC(50) = 0.014 microM), and an extremely selective [COX-2 selectivity index (SI) > 7142], COX-2 inhibitor that showed superior anti-inflammatory (AI) activity (ID(50) = 2.5 mg/kg) relative to celecoxib (ID(50) = 10.8 mg/kg). This initial study was extended to include the design of a structurally related group of acyclic triaryl (Z)-olefins possessing an acetoxy (OAc) substituent at the para-position of the C-1 phenyl ring that is cis to a C-2 4-methylsulfonylphenyl substituent. COX-1 and COX-2 inhibition studies showed that (Z)-1-(4-acetoxyphenyl)-1-phenyl-2-(4-methylsulfonylphenyl)but-1-ene [(Z)-13b] is a potent (COX-1 IC(50) = 2.4 microM; COX-2 IC(50) = 0.03 microM), and selective (COX-2 SI = 81), COX-2 inhibitor which is a potent AI agent (ID(50) = 4.1mg/kg) with equipotent analgesic activity to celecoxib. A molecular modeling (docking) study showed that the SO(2)Me substituent of (Z)-13b inserts deep inside the 2 degrees -pocket of the COX-2 active site, where one of the O-atoms of SO(2) group undergoes a H-bonding interaction with Phe(518). The p-OAc substituent on the C-1 phenyl ring is oriented in a hydrophobic pocket comprised of Met(522), Gly(526), Trp(387), Tyr(348), and Tyr(385), and the C-2 ethyl substituent is oriented towards the mouth of the COX-2 channel in the vicinity of amino acid residues Arg(120), Leu(531), and Val(349). Structure-activity data acquired indicate that a (Z)-olefin having cis C-1 4-acetoxyphenyl (phenyl) and C-2 4-methylsulfonylphenyl substituents, and a C-1 phenyl substituent in conjunction with either a C-2 hydrogen or short alkyl substituent provides a novel template to design acyclic olefinic COX-2 inhibitors that, like aspirin, have the potential to acetylate COX-2.  相似文献   

16.
17.
Various compounds with steroidal structure were tested for inhibitory effects on enzymatic activity of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) from rat renal microsomes. Most substances exerting inhibitory potency on both the oxidative as well as the reductive activity can be classified into two main groups: pentacyclic triterpenoids of the oleane type and steroidal detergents of the CHAPS-series. Inhibition is competitive, as was shown for one compound of each group. The IC50 values of the various inhibitors range over five orders of magnitude. In all cases, oxidative activity was inhibited more effectively than reductive activity. An attempt has been made to correlate structural properties and inhibitory potency. In brief, inhibition seems to be enhanced by a C11-oxygen function, which is present in all endogenous glucocorticosteroids and a C7-OH function. Inhibition is reduced by a large and polar substituent at C3 in the A-ring. A large D-ring substituent, such as a bisgluconamidopropyl side chain or even an additional E-ring, does not prevent binding to the enzyme, although inhibition seems to be influenced by its steric conformation. The cardiac glycosides and steroidal antibiotics tested exert no inhibitory effect on 11 beta-HSD. Cholesterol and pentacyclic triterpenoids of the lupane type exhibit a very poor inhibition, probably caused by the localization of planar structures in the ring systems, which differs from that of the effective oleane type inhibitors.  相似文献   

18.
The effect of several imidazole containing drugs including keto on human adrenal 17 alpha-hydroxylase, 17,20-lyase, 21-hydroxylase, 11 beta-hydroxylase and 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) activities was studied in vitro. The order of decreasing inhibitory potency as determined from ID50 values for both 17 alpha-hydroxylase (ID50 values ranged from 1.13-4.17 mumol/l) and 17,20-lyase (0.57-1.95 mumol/l) activities was: bifon greater than clot greater than keto greater than micon greater than econ greater than isocon greater than tiocon. Using [3H]progesterone (5.50-12.25 mumol/l) as the substrate for the 21-hydroxylase activity the order of decreasing inhibitory potency was: clot greater than bifon greater than isocon greater than micon greater than tiocon greater than econ greater than tiocon greater than keto. For the 11 beta-hydroxylation of [3H]deoxycortisol (1.48-2.34 mumol/l) the order of decreasing inhibitory potency was keto greater than bifon greater than clot greater than micon greater than econ greater than isocon greater than tiocon. The cytochrome P-450 dependent enzyme most sensitive to inhibition was 17,20-lyase and the least sensitive was 21-hydroxylase whereas the imidazole drugs were without effect on the cytochrome P-450 independent 3 beta-HSD-I activity. In agreement with previous results a common structural feature of the imidazole drugs having an inhibitory effect was the presence of aromatic rings on the N-1 substituent of the imidazole ring.  相似文献   

19.
A series of helicid analogues were synthesized and evaluated as tyrosinase inhibitors. The results demonstrated that some compounds had more potent inhibitory activities than arbutin (IC(50) 7.3 mM). In particular, compound 1c bearing 4,6-O-benzylidene substituent on the sugar moiety was found to be the most potent inhibitor with IC(50) value of 0.052 mM. The inhibition kinetics analyzed by Lineweaver-Burk plots revealed that helicid analogues were competitive inhibitors. The Circular dichroism spectra indicated that those compounds induced conformational changes of mushroom tyrosinase upon binding.  相似文献   

20.
A series of aromatic sulfonamides incorporating indane moieties were prepared starting from commercially available 1- and 2-indanamine, and their activity as inhibitors of two carbonic anhydrase (CA, EC 4.2.1.1) isozymes, hCA I and II was studied. The new sulfonamides incorporating acetamido, 4-chloro-benzoyl, valproyl, tetra-, and pentafluorobenzoyl moieties acted as very potent inhibitors of the slow red blood cell isozyme hCA I (K(i)s in the range of 1.6-8.5 nM), which usually has a lower affinity for such inhibitors, as compared to isozyme II. Some derivatives also showed excellent hCA II inhibitory properties (K(i)s in the range of 2.3-12 nM), but the anticonvulsant activity of these sulfonamides was rather low as compared to that of other sulfonamide/sulfamate CA inhibitors, such as methazolamide. Furthermore, the 2-amino/acetamido-indane-5-sulfonic acids prepared during this work also showed interesting CA inhibitory properties, with inhibition constants in the range of 43-89 nM against the two isozymes, being among the most potent sulfonic acid CA inhibitors reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号