首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasma amino acids of Zucker obese (fa/fa) and lean (Fa/?) rats fed either a reference nonpurified pellet or a cafeteria diet have been studied from 30 to 60 days after birth. Obese rats showed higher plasma branched chain amino acid levels but similar total amino acids, urea and glucose concentrations. The ingestion of a cafeteria diet induced higher levels in many amino acids, as well as in the composite figure in lean rats, but failed to alter total 2-amino nitrogen concentrations in obese rats, despite high levels in several non-essential amino acids and lower values in essential amino acids; urea levels were much lower in rats fed the cafeteria diet. The results are consistent with an impairment of amino acid nitrogen elimination via urea cycle in cafeteria diet-fed rats. This is independent of the hyperinsulinemia-driven plasma accumulation of several essential amino acids induced by genetic obesity. The effects were, then additive.  相似文献   

2.
—An attempt was made to isolate the saturable uptake from the unidirectional influx of amino acids into tissue slices and to estimate the transport constants and maximal velocities of saturable transport. The method was applied to studies on the inhibition of phenylalanine in the saturable influx of tyrosine, tryptophan, histidine and leucine into brain cortex slices from adult and 7-day-old rats. In both age groups phenylalanine inhibited the influx of the other amino acids, and vice versa. The apparent transport constants of the other amino acids increased in the presence of phenylalanine more noticeably in the slices from 7-day-old rats than in those from adult rats, whereas the concomitant influx of phenylalanine was inhibited less in the slices from 7-day-old rats. In immature animals in vivo competition between amino acids may play a more marked role in the supply of amino acids from plasma to brain, as the transport systems in brain slices from 7-day-old rats become saturated with extracellular amino acids more readily than do the transport systems in brain slices from adult rats.  相似文献   

3.
Summary Concentrations and fluxes of amino acids across the portal-drained viscera (PDV) and liver were assessed in rats fed a meal of one of three arginine-deficient diets containing either alanine or the arginine precursors, ornithine or citrulline. A previous report included findings of seven arginine-related amino acids and indicated that only the citrulline-containing diet protected blood arginine concentrations. In the present report we extend these findings and note that the concentrations and fluxes of the non-arginine-related amino acids showed remarkable consistency across diet groups. However, total branched-chain amino acid (BCAA) concentrations of arterial blood were higher in rats fed the - Arg/+ Ala and the - Arg/+ Orn diets than in rats fed the control (+ Arg) diet. The elevated BCAA correlated with higher circulating concentrations of other essential amino acids but were inversely correlated with arginine concentrations. PDV and hepatic fluxes of BCAA were not different across diet groups, indicating that amino acid absorption and hepatic utilization of BCAA were generally comparable across diet groups. Hepatic concentrations of 14 of 22 measured amino acids, including total BCAA, were correlated with their arterial concentrations. The circulating concentrations and net PDV and hepatic fluxes of rats fed the control diet were comparable to our previous observations in fed rats and illustrate the role of the liver in utilization of diet-derived essential amino acids.Abbreviations PDV portal-drained viscera - BCAA branched-chain amino acids - SSA 5-sulfosalicylic acid - PBF portal blood flow - HBF hepatic blood flow - SELSM pooled standard errors of least squares means - TAA total amino acids - NEAA nonessential amino acids - EAA essential amino acids - LNAA large neutral amino acids Mention of a trade name, proprietary product or specific equipment does not constitute a guarantee by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

4.
The etiologic relationship between disturbances in metabolism of amino acids and amines and hepatic coma was investigated by examining the effects of diets containing various mixtures of amino acids on brain amine metabolism in rats with a portacaval shunt, using a method for simultaneous analysis of amino acids and amines. Rats with a portacaval shunt were fed on four different amino acid compositions with increased amounts of various amino acids suspected to be etiologically related to hepatic coma, such as methionine, phenylalanine, tyrosine, and tryptophan. The animals were killed 4 weeks after operation. During the experimental period, these animals did not become comatose, but exhibited various behavioral abnormalities. Marked increase in the plasma and brain levels of the augmented amino acids, especially methionine and tyrosine, were observed in rats with a portacaval shunt. Brain noradrenaline, dopamine, and serotonin levels were significantly decreased when the brain tyrosine level was increased. These results indicate that in rats with a portacaval shunt the dietary levels of amino acids greatly influence the brain levels of both amino acids and transmitter amines.  相似文献   

5.
Summary The objective of these experiments was to examine short- and long-term (7 d) effects of arginine-deficient diets on free amino acid concentrations in hindlimb muscle of rats. In rats fed the control diet containing arginine (+Arg), muscle alanine and methionine concentrations were higher 1 and 2h after feeding compared to food-deprived rats, whereas branched-chain amino acids, arginine and asparagine concentrations were lower postprandially. In Experiment 1, rats were fed an arginine-deficient (–Arg) diet with glutamate (+Glu) substituted for arginine; alanine (+Ala), ornithine (+Orn) or citrulline (+Cit) were substituted for arginine in Experiment 2. In Experiment 1, arginine concentrations decreased in blood but not in muscle. This contrasts with rats fed –Arg/+Ala or –Arg/+Orn diets which had muscle arginine concentrations less than half the concentrations in controls or in rats fed the –Arg/+Cit diet. Muscle essential amino acids in Experiment 2 did not differ by diet, but muscle branched-chain amino acids were elevated relative to controls in the rats fed –Arg/+Ala or –Arg/+Orn diets; however, rats fed the –Arg/+Cit diet had levels similar to the controls. Also, muscle branched-chain amino acids were correlated with glutamine concentrations in both blood and muscle. The measurements in the post-meal period suggest that muscle amino acid concentrations may more closely reflect dietary amino acid patterns than do blood amino concentrations.Abbreviations BCAA branched-chain amino acids - BCKADH branched-chain ketoacid dehydrogenase - EAA essential amino acids - LNAA large neutral amino acids - NEAA nonessential amino acids - PDV portal-drained viscera - SELSM standard error of least squares means - SSA 5-sulfosalicylic acid - TAA total amino acids Mention of a trade name, proprietary product or specific equipment does not constitute a guarantee by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

6.
The effects of arsenate on the levels of free amino acids in rat plasma and red blood cells have been investigated. The biggest changes occur in the branched-chain amino acids valine, isoleucine and leucine which are markedly decreased. The levels of several other amino-acids also change. The effects on the amino acids are not due to a change in the food intake caused by dosing with arsenate. This has been shown by comparing the results with those on fasting rats (40 h). Branched-chain amino acids in particular are markedly increased in plasma of fasting rats as opposed to a decrease in arsenate-treated rats.  相似文献   

7.
Age-related alterations and differences of weights and those of amino acid concentrations in the cerebrospinal fluid (CSF) were evaluated between Sprague Dawley (SD) rats and Wistar Kyoto (WKY) rats from eight to twenty weeks of age. The weights of SD rats were heavier than WKY rats at all ages. The age-related alterations of the CSF concentration of many amino acids within each strain were significant but showed no significant trend with age. Between the strains, the concentration differences of excitatory and inhibitory amino acids were not frequent although the concentrations of arginine, alanine and threonine were significantly higher in SD rats than in WKY rats. These results suggest that the different CSF concentrations of amino acids may relate to characteristics of rat strains.  相似文献   

8.
The effects of melatonin and dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) intraperitoneal administration on the rhythms of free amino acids content in the retina of rats were studied. The authors found that the levels of those amino acids, which are protein constituents but not neurotransmitters in the rat retina, change diurnally with maximum at 3-6 h after light onset. Diurnal changes of Ala, Arg, Asn, Ile, Met, Ser, Trp, and Val content persisted in the retina of rats maintained at constant darkness. This fact confirms the true circadian nature of these rhythms. Constant lighting abolished diurnal changes of the content of all amino acids with the exception of Trp. Daytime but not nighttime administration of melatonin decreased the levels of Ala, Asn, Gln, Ile, Met, and Ser down to nocturnal values. Diurnal changes of amino acids content vanished in melatonin-injected rats. The effect of melatonin administration disappeared when the protein synthesis was inhibited by cycloheximide. The effect of intraperitoneal administration of L-DOPA on the levels of free amino acids was opposite the effect of melatonin administration. L-DOPA increased nocturnal levels of Gly, Thr, Trp, and Val but had no effect on the daytime amino acids content. As in the case of melatonin administration, significant diurnal changes of amino acid levels disappeared in L-DOPA-injected rats. The authors hypothesize that melatonin and dopamine can serve as zeitgebers-antagonists of amino acids content rhythms in the rat retina.  相似文献   

9.
Microbial protease inhibitors, bestatin and leupeptin, were perfused through hindquarters, and the effects of these inhibitors on the amino acid release and the accumulation of acid soluble peptides were studied using normal and Streptozotocin-induced diabetic rats. Both inhibitors depressed the amino acid release from the hindquarters of normal rats. However, leupeptin, unlike bestatin, failed to suppress the release of amino acids in diabetic rats. Bestatin caused an accumulation of acid soluble peptides in perfused skeletal muscle. However, leupeptin did not show this effect. The amino acid composition and the N-terminal amino acids were analyzed on the acid soluble peptides accumulated after bestatin perfusion. Branched-chain amino acids were preferentially accumulated as the acid soluble peptides, and more than half of the total amounts of these amino acids were located in the N-terminus. From these results, it was concluded that bestatin-sensitive protease(s), probably leucine aminopeptidase and/or arylamidase, play an important role in the degradation process of skeletal muscle proteins, especially in the steps to degrade acid soluble peptides into free amino acids.  相似文献   

10.
新型氨基酸制剂对创伤大鼠血游离氨基酸的影响   总被引:1,自引:0,他引:1  
观察了富含牛磺酸 (Tau)、谷氨酰胺 (Gln)以及高支链氨基酸 (HBCAA)的新型氨基酸制剂对创伤大鼠血中游离氨基酸浓度的影响。结果表明 ,创伤后三天起 ,血浆游离氨基酸总和均显著降低 ,对照组基本无改变 ;创伤后Tau、BCAA、精氨酸以及天冬氨酸等具有抗氧化和免疫调节作用的氨基酸含量明显降低 ,新处方使用一周后其浓度有效回升 ,且效果好于 17种氨基酸 ,从而有利于机体伤口的愈合。这些结果为进一步阐明复合氨基酸制剂促进创伤愈合的作用及其开发应用提供了理论依据  相似文献   

11.
Arteriovenous differences of amino acids across the mammary glands of lactating rats are diminished when the rats are starved for 24 h. When 24 h-starved rats were refed for 2 1/2 h, the arteriovenous differences of amino acids returned to values similar to those found in well-fed rats. In order to find a possible explanation for these rapid changes, we tested the effect of ketone bodies on amino acid uptake by the gland. At 5 min after injection of acetoacetate to fed rats, when the total concentration of ketone bodies in blood was similar to that found in starvation, the uptake of amino acids by the mammary gland was similar to that found after starvation, i.e. lower than in fed rats. However, 30 min after administration of acetoacetate, when the arterial concentration of ketone bodies had returned to values similar to those in fed rats, the arteriovenous differences of amino acids were similar to those found in fed rats. We conclude that the changes in blood ketone bodies may be responsible, at least in part, for the changes in amino acid uptake that occur in starvation and in the starvation--refeeding transition.  相似文献   

12.
The release of amino acids by skeletal muscle was studied in the isolated perfused rat hindquarter. Adrenalectomy depressed the formation of glutamine and alanine as well as the efflux of all other amino acids measured. Betamethasone--a synthetic glucocorticoid--caused a significant increase in the efflux of nearly all amino acids up to the level of normal controls. The release of amino acids was also increased in perfused hindquarters of diabetic rats. On the other hand, insulin exhibited a depressing effect on the release of amino acids by hindquarters of normal rats. The metabolic integrity of the muscle tissue was proved by measuring creatine phosphate, ATP, ADP and water content as well as by the significant insulin effect on glucose uptake and on [14C]leucine incorporation into muscle proteins.  相似文献   

13.
In both trained and untrained rats, exercise increased the plasma concentration ratio of aromatic amino acids to branched-chain amino acids which might favour entry of the aromatic amino acids into the brain. Exercise in trained rats did not change the brain concentration of 5-hydroxytryptamine but increased that of 5-hydroxyindole acetic acid. Exercise in the untrained rat increased the concentration of brain tryptophan and that of 5-hydroxytryptamine but that of 5-hydroxyindole acetic acid was unchanged. The increased concentration of 5-hydroxytryptamine in untrained rats might be involved in central fatigue.  相似文献   

14.
The effect of amino acids, in concentrations corresponding to those found in the portal vein of rats given a high-protein diet, was investigated on the activity of system A amino acid transport in hepatocytes from fed rats. Amino acids counteracted the induction of system A by insulin or glucagon. This effect was observed at all concentrations of hormones tested, up to 1 microM. Amino acids did not affect the basal cyclic AMP concentration in hepatocytes, or the large rise in cyclic AMP elicited by glucagon. The reversal of system-A induction was observed at relatively low concentration of amino acids, corresponding to plasma values reported in rats given a basal diet. Amino acids were separately tested: substrates of system A were particularly efficient, but so were glutamine and histidine. Non-metabolizable substrates of system A, such as 2-aminoisobutyrate, were also inhibitory, suggesting that a part of the effect of amino acids is independent of their cellular metabolism. Provision of additional energy substrates such as lactate and oleate did not affect induction of system A or the inhibitory effects of amino acids. Thus amino acids do not act by serving as an energy source and by maintaining the integrity of hepatocytes. Inhibition of mRNA synthesis by actinomycin practically abolished the effect of amino acids on the induction of system A by glucagon. The results suggest that amino acids may promote the synthesis of protein(s) affecting the activity of system A either directly at the carrier unit or at an intermediate stage of its emergence.  相似文献   

15.
Albumin synthesis was measured in the isolated perfused rat liver by using the livers of both well-fed and starved rats. Starvation markedly decreased albumin synthesis. The livers from starved rats were unable to increase synthesis rates after the addition to the perfusates of single amino acids or the addition of both glucagon and tryptophan. Arginine, asparagine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan and valine, added together to ten times their normal peripheral blood concentrations, restored synthesis rates to normal. The plasma aminogram (i.e. the relative concentrations, of amino acids) was altered by depriving rats of protein for 48h. The use of blood from the deprived rats as perfusate, instead of normal blood, decreased albumin synthesis rates significantly by livers obtained from well-fed rats. The addition of single amino acids, including the non-metabolizable amino acid, alpha-aminoisobutyric acid, to the above mixture increased albumin synthesis rates to normal values. It is concluded that amino acids play an important role in the control of albumin synthesis and that more than one mechanism is probably involved.  相似文献   

16.
—High circulating levels of phenylalanine caused depletions of threonine, valine, methionine, isoleucine, leucine, histidine, tryptophan, and tyrosine in immature and adult rat brains. The branched-chain amino acids were most affected. Their reductions ranged between 38–64 per cent of control values when phenylalanine was administered either parenterally or in the diet. The pattern of cerebral amino acid depletions found in phenylalanine-injected infant rats was similar to that of the adults. Phenylalanine loading caused depletions in serum amino acid levels in adult rats, but in infant rats the serum levels were either unchanged or somewhat elevated. Tyrosine, when administered to adult rats either parenterally or via the diet, caused cerebral depletions in essential amino acids, but the depletions were not as striking as with phenylalanine. In both the infant and adult rat, brain-blood ratios of most of the essential amino acids were significantly reduced by phenylalanine loading.  相似文献   

17.
The effects of amino acids on protein turnover in skeletal muscle were determined in the perfused rat hemicorpus preparation. Perfusion of preparations from fasted young rats (81±2 g) with medium containing either a complete mixture of amino acids at five times (5×) their normal plasma levels, a mixture of leucine, isoleucine, and valine at 5× or 10× levels, or leucine alone (10×) resulted in a 25–50% increase in muscle protein synthesis and a 30% decrease in protein degradation compared to fasted controls perfused in the absence of exogenously added amino acids. When the branched-chain amino acids were omitted from the complete mixture, the remaining amino acids (5×) had no effect on protein turnover. The complete mixture at 1× levels was also ineffective. Comparison of the effects of amino acids with those of glucose and palmitate indicated that amino acids were not acting by providing substrates for energy metabolism. The stimulatory effect of amino acids on protein synthesis was associated with a facilitated rate of peptide-chain initiation as evidenced by a relative decrease in the level of ribosomal subunits. This response was not as great as that produced by insulin, and the amino acids did not augment the effect of insulin. Although protein synthesis in preparations from fed young rats (130±3 g) was stimulated by the addition of a mixture of the branched-chain amino acids (5×) to about the same extent as that observed in the fasted young rats, protein degradation was not affected. Furthermore, neither synthesis nor degradation were affected in preparations from fasted older rats (203±9 g) suggesting that the age and or nitritional state of the animal may influence the response of skeletal muscle to altered amino acid levels.  相似文献   

18.
Portal-systemic shunting and hyperammonemia lead to an accumulation of the large neutral amino acids in brain and apparently alter transport of neutral amino acids across the blood-brain barrier. It has been proposed that portal-systemic shunting leads to a high brain concentration of glutamine, a product of cerebral ammonia detoxification, and thereby affects the transport of other neutral amino acids across the blood-brain barrier. To test this hypothesis, rats with a portacaval shunt were treated with L-methionine-dl-sulfoximine (MSO), an inhibitor of glutamine synthesis. Treatment with MSO resulted in lower concentrations of the neutral amino acids in brain of portacaval-shunted rats and a higher brain ammonia concentration, compared with untreated shunted rats. These results suggest that the accumulation of neutral amino acids in brain after portacaval shunt depends on the increased synthesis of glutamine in brain.  相似文献   

19.
Urinary excretion of acid soluble peptide (ASP)-form amino acids was lower in rats deprived of protein than in rats fed on a 20% casein or 20% gluten diet. However, the amino acid pattern of urinary ASP was similar among each of the three dietary groups, suggesting that urinary ASP is mainly endogenous origin under these nutritional conditions.

College women who were given a meat-free protein diet for 3 days after 10 days’ protein deprivation excreted 1.4 times the amount of ASP-form amino acids during protein deprivation.

The rate of urinary excretion of ASP-form amino acids in the state of protein deprivation was proportional to the metabolic body size of organisms as far as rats and women were concerned.

Streptozotocin-induced diabetic rats excreted two times the amount of ASP-form amino acids compared with normal rats. This suggests that endogenous protein catabolism doubled in diabetic rats.

When labelled urinary ASP was injected into rats, approximately 40% of the label was recovered as urinary ASP within 24 hr. This excretion rate was far higher than that after the injection of free leucine.

The rate of urinary excretion of ASP-form amino acids correlated with that of Nτ-methylhistidine in rats.

These results favor the hypothesis that urinary ASP reflects the catabolism of body proteins.  相似文献   

20.
The effect of amino acids L-lysin, L-asparagin, L-arginin, L-glutamate was investigated in organotypic tissue culture of spleen, liver and brain cortex of rats at different age. The amino acids in concentration 0.05 ng/ml are active inducing a less intensive growth zone, as compared to control, in 1-day and in older rats--an intensive growth zone, as compared to control in 21-day rats. The data obtained suggest a modulating role of amino acids in the tissues at different stages of maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号