首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Ryegrass, white clover and Rhizobium isolated from the corresponding clover nodules, were harvested from a natural pasture in the Massif Central mountains (France). The specificity between Lolium, Trifolium and Rhizobium, and the genetic diversity of Rhizobium were examined. This study showed that: 1) Natural neighbouring combinations of white clover and ryegrass, re-planted together in pots, accumulated a higher biomass than non-neighbouring ones. This increase of mass is higher in the presence of the native strain of Rhizobium. 2) When white clover was inoculated with a mixture of Rhizobium strains, nodules were more often formed by its native strain. 3) The genetical diversity of the Rhizobium leguminosarum biovar trifolii was very high, as revealed by electrophoresis of esterases on seven substrates. These results support the hypothesis that there is a co-adaptation between white clover, ryegrass and Rhizobium Received: 25 March 1996 / Accepted: 13 September 1996  相似文献   

2.
From several native clover species, growing in six different soil types, 170 Rhizobium leguminosarum biovar trifolii strains were isolated, covering the central and southern regions of Portugal. The effectiveness of the strains varied from ineffective to highly effective on T. subterraneum cv. Clare and on T. fragiferum cv. Palestine, with a predominance of medium and high effectiveness on both host plants. The effectiveness was not influenced by provenence (soil or plant), except for the strains from the rankers soils and for the strains isolated from T. pratense, that were ineffective or medium effective on T. subterraneum.Selected strains were evaluated for effectiveness on T. subterraneum cv. Clare, using the commercial strain TA1 as reference. Several of the isolated strains were more effective than TA1, indicating that local strains may be used to produce better inoculants.  相似文献   

3.
Summary The infection of white clover seedlings byRhizobium strains with different host range properties was assessed using various microscopic techniques. Several wild-type andRhizobium leguminosarum biovarvicias hybrid strains containing definedR. l. bv.trifolii host range genes were used. The morphological changes in the root tissue of uninoculated and rhizobia inoculated white clovers were identified and compared. In particular, changes were observed in the induction of inner cortical cell division, alterations to nodule development and lateral root formation. The responses of the infected roots and the types of structures formed support the hypothesis that lateral roots and nodules may be physiologically homologous structures. To establish a normal pattern of nodulation on white clover roots, both sets of known host specific nodulation genes (operonsnod FERL andnod MNX) ofR. l. bv.trifolii were required. However, some nodule development occurred when only thenod FERL genes were present in the hybrid strain.  相似文献   

4.
The expression of nodulation genes inR. trifolii is induced by flavone compounds present in clover root exudates. In the present experiments a bioassay with an indicator strain ofR. trifolii, which contained thelacZ gene fromEscherichia coli fused to theR. trifolii nodA gene, was used to measure the level ofnod gene expression inR. trifolii. Compounds that stimulatednodA gene expression were shown to be present in exudates of white clover (Trifolium repens L.) and nine cultivars of subterranan clover (T. subterraneum L.) seedling sgrown at a range of pH between pH 3.0 and pH 8.0. Thenod gene-induction activity of exudates was, however, reduced when seedlings of all clover species were grown at pH>7.0 and at pH<4.0 and pH<5.0 for white clover and subterranean clover respectively. No major differences were apparent in the activity of exudates from seedlings of the various cultivars of subterranean clover.Nod gene-induction activity of exudates was shown to increase markedly with seedling age. The presence of Ca at concentrations up to 10 mM in seedling culture solutions also resulted in marked increases in thenod gene-induction activity of seedling exudates. Increases in activity due to the presence of Ca were most apparent at low pH where between 5 and 10-fold increases were observed for white clover and subterranean clover respectively. Conversely, the presence of Al at concentrations up to 60 M in seedling culture solutions had no effect on thenod gene-induction activity of seedling exudates.The observations that both low pH and Ca concentrations affected thenod gene-induction activity of seedling exudates suggested that the net presence of stimulatory flavones in root exudates was an important contributing factor to the acid-sensitive step in nodule formation.  相似文献   

5.
Summary A microscopic assessment is presented of the comparative infection capacity of wild-type and hybrid strains ofRhizobium leguminosarum bv.viciae withR. l. bv.trifolii strain ANU 843 on white clover seedlings. TheR. l. bv.viciae hybrid strains contained defined DNA segments coding for different combinations ofR. l. bv.trifolii host-specific nodulation genes. White clover plants were examined over a 72 h period to assessRhizobium infectivity, the morphological changes in root hair growth; colonisation ability of rhizobia; infection thread initiation and the ability to induce cortical cell division.R. l. bv.viciae strain 300 induced root hair curling more slowly than strain ANU 843 or any of the hybrid strain 300 bacteria, and when curling had taken place, there was poorer colonization by strain 300 within the folded hair cell, no evidence of infection thread formation and only limited cortical cell division 72 h after inoculation. The addition of the host-specific nodulation genes ofR. l. bv.trifolii to strain 300 was necessary to induce infection threads and establish a normal pattern of nodulation of the roots of white clovers.  相似文献   

6.
Summary Nitrate added at critical concentrations to plant growth medium inhibits the infection of legume roots by Rhizobium. The direct interaction, of nitrate and trifoliin A, a Rhizobium-recognition lection from white clover (Trifolium repens L.), was examined as a possible basis for this regulation. Selective molecular ultrafiltration studies to detect ligand-protein interactions showed that radioactive13NO3 did not bind directly to trifoliin A when incubated at two molar ratios. Immunoprecipitation of trifoliin A by its homologous antibody was unaffected by 15 mM NO3 . In addition, there was no apparent reduction in attachment ofR. trifolii 0403 to root hairs of clover seedings during 1 h of incubation in the presence of 15 mM NO3 . These results show that nitrate inhibition of these early steps of the infection process is not due to a direct interaction of nitrate with trifoliin A or its glycosylated receptors.  相似文献   

7.
Axenic seedling bioassays were performed on white clover, vetch, and alfalfa to assess the variety and dose responses of biological activities exhibited by membrane chitolipooligosaccharides (CLOSs) from wild type Rhizobium leguminosarum bv. trifolii ANU843. Subnanomolar concentrations of CLOSs induced deformation of root hairs (Had) and increased the number of foci of cortical cell divisions (Ccd) in white clover, some of which developed into nodule meristems. In contrast, ANU843 CLOSs were unable to induce Had in alfalfa and required a 104-fold higher threshold concentration to induce this response in vetch. Also, ANU843 CLOSs were not mitogenic on either of these non-host legumes. In addition, CLOS action also increased chitinase activity in white clover root exudate. Thus, the membrane CLOSs from wild type R. leguminosarum bv. trifolii are fully capable of eliciting various symbiosis-related responses in white clover in the same concentration range as extracellular CLOSs of other rhizobia on their respective legume hosts. These results and our earlier studies indicate that membrane CLOSs represent one of many different classes of bioactive metabolites made by R. leguminosarum bv. trifolii which elicit more intense symbiosis-related responses in white clover than in other legumes. Therefore, CLOSs evidently play an important role in symbiotic development, but they may not be the sole determinant of host-range in the Rhizobium-clover symbiosis.Abbreviations Ccd cortical cell division - CLOS chitolipooligosaccharide - Had root hair deformation  相似文献   

8.
Pseudomonas sp. strain 267 isolated from soil promoted growth of different plants under field conditions and enhanced symbiotic nitrogen fixation in clover under gnotobiotic conditions. This strain produced pyoverdine-like compound under low-iron conditions and secreted vitamins of the B group. The role of fluorescent siderophore production in the beneficial effect of strain 267 on nodulated clover plants was investigated. Several non-fluorescent (Pvd-) Tn5 insertion mutants of Pseudomonas sp. strain 267 were isolated and characterized. The presence of Tn5 insertions was confirmed by Southern analysis of EcoRI digested genomic DNA of each derivative strain. The siderophore-negative mutants were compared to the parental strain with respect to their growth promotion of nodulated clover infected with Rhizobium leguminosarum bv. trifolii 24.1. We found that all isolated Pvd- mutants stimulated growth of nodulated clover plants in a similar manner to the parental strain. No consistent differences were observed between strain 267 and Pvd- derivatives strains with respect to their plant growth promotion activity under gnotobiotic conditions.Dr Deryto died in august 1994  相似文献   

9.
Summary This paper reviews (i) basic studies on the genetics of symbiosis in red clover (a self-sterile species) and subterranean clover (cleistogamous) and (ii) work on selection and plant breeding to increase nitrogen fixation in these hosts.Symbiotic effectiveness in red clover is influenced by many major and minor genes. The highly effective phenotype is inherited in a complex manner associated with early nodulation and the formation of large amounts of persistent bacteroid-containing tissue. Lines bred to fix more nitrogen with one strain ofRhizobium trifolii do so with most but not all other strains examined. They also show slightly increased vigour when grown on nitrate. The highly effective response is correlated with abundant nodulation and an early flowering habit, the evidence from breeding studies indicating that this correlation is not absolute. Normally effective and highly effective nodules have the same specific nitrogenase activities. The expression of the highly effective response is relatively little affected by environmental factors (temperature, light intensity, day length, supplementary carbon-di-oxide). Inbreeding substantially degrades the symbiotic response.Heterosis is shown in crosses between cultivars of subterranean clover but otherwise selection to increase effectiveness in this host was unsuccessful.The relevance of these results (and their physiological aspects) for the improvement of grain legumes is discussed.  相似文献   

10.
Fluorescent Pseudomonas sp. strain 267 promotes growth of nodulated clover plants under gnotobiotic conditions. In the growth conditions (60 M FeCl3), the production of siderophores of the pseudobactin-pyoverdin group was repressed. Plant growth enhancement results from secretion of B vitamins by Pseudomonas sp. strain 267. This was proven by stimulation of clover growth by naturally auxotrophic strains of Rhizobium leguminosarum bv. trifolii and marker strains E. coli thi- and R. meliloti pan- in the presence of the supernatant of Pseudomonas sp. strain 267. The addition of vitamins to the plant medium increased symbiotic nitrogen fixation by the clover plants.  相似文献   

11.
Summary Combined inoculation ofRhizobium trifolii withSaccharomyces cerevisiae and other yeasts generally enhanced the number of nodules, length of plants and dry weight of Egyptian clover (Trifolium alexandrinum) seedlings grown on agar slopes. Similar effects were observed when seedlings were inoculated withR. trifolii in the presence of dialyzed culture filtrate ofS. cerevisiae.  相似文献   

12.
Schwinghamer , E. A. (Brookhaven Natl. Lab., Upton, New York.) Studies on induced variation in the rhizobia. III. Host range modification of Rhizobium trifolii by spontaneous and radiation-induced mutation. Amer. Jour. Bot. 49(3): 269–277. Illus. 1962.—Mutant strains capable of nodulating pea seedings ineffectively (incapable of nitrogen fixation) have been obtained from 2 antibiotic-resistant marked strains of Rhizobium trifolii which normally do not form nodules on this host. Such variant forms apparently occur spontaneously in these strains at a low frequency which can be significantly increased by irradiation with ultraviolet light, X rays, and fast neutrons. Nodulation of vetch, sweet peas and several varieties of peas by the mutant strains suggests a close parallelism of the extended host range with the range of R. leguminosarum, although nitrogen fixation by the mutants on the new hosts is negligible or absent. The mutant nodules on these hosts also differ from those of the pea strains in slightly smaller size, spherical form, and lighter pink color. Nodule morphology on the homologous host, clover. appears unaltered but a slight loss of effectiveness was noted on red clover. This loss may be attributed partly to a reduction in infective ability since the average number of nodules formed per plant of clover or pea is appreciably lower than for comparable inoculation by strains of nonmutant R. trifolii or R. leguminosarum, respectively. Cultural characteristics of mutant strains resemble those of the nonmutant R. trifolii strains.  相似文献   

13.
Summary Four strains ofRhizobium trifolii were individually inoculated to pots containing sterilized sand vermiculite mixture, half of which were seeded with red clover and half not. Pots were maintained in an ordinary glasshouse and watered with tap water.Phage was first detected after 4 months, and almost all pots contained one or more phages againstRhizobium trifolii after 9 months. The presence of plants increased the titer of phages in some pots inoculated withR. trifolii, but had no effect on the number of different phages.The pots also contained phages against soil bacteria other than Rhizobium indicating that phages are spread readily and constitute a normal part of the life cycle of soil bacteria.The number of different phages isolated from the pots was affected by the strain of Rhizobium used as inoculum.  相似文献   

14.
Strains of Rhizobium leguminosarum (biovar trifolii) isolated from two Ethiopian soils or obtained from a commercial source were evaluated for symbiotic effectiveness on five African annual clover species. Numerous Rhizobium trifolii strains that exhibited varying levels of symbiotic effectiveness were isolated from both soils (a nitosol and a vertisol), and it was possible to identify strains that were highly effective for each clover species. The soil isolates were, as a group, superior to the strains from the commercial source. Several R. trifolii strains were found to be effective on more than one clover species, and there appeared to be at least two and possibly three distinct cross-inoculation effectiveness groups.  相似文献   

15.
Summary The Rhizobium trifolii genes necessary for nodule induction and development have been isolated on a 14.0kb fragment of symbiotic (Sym) plasmid DNA. When cloned into a broad-host-range plasmid vector, these sequences confer a clover nodulation phenotype on a derivative of R. trifolii which has been cured of its endogenous Sym plasmid. Furthermore, these sequences encode both host specificity and nodulation functions since they confer the ability to recognize and nodulate clover plants on Agrobacterium and a fast-growing cowpea Rhizobium. This indicates that the bacterial genes essential for the initial, highly-specific interaction with plants are closely linked.  相似文献   

16.
Non-motile mutants of Rhizobium trifolii defective in either flagellar synthesis or function were isolated by transposon Tn5 mutagenesis. they were indistinguishable from motile control strains in growth in both laboratory media and in the rhizosphere of clover roots. When each non-motile mutant was grown together with a motile strain in continuous culture, the numbers of motile and non-motile organisms remained in constant proportion, implying that their growth rates were essentially identical. When inoculated separately onto clover roots, the mutants and wildtype did not differ significantly in the number of nodules produced or in nitrogen fixing activity. However, when mixtures of equal numbers of mutant and wild-type cells were inoculated onto clover roots, the motile strain formed approximately five times more nodules than the flagellate or non-flagellate, non-motile mutants, suggesting that motility is a factor in competition for nodule formation.  相似文献   

17.
为揭示丛枝菌根真菌(AMF)和根瘤菌在白三叶氮(N)同化中的作用,该研究对白三叶进行单一或联合接种隐类球囊霉(Paraglomus occultum)和三叶草根瘤菌(Rhizobium trifolii),分析其对白三叶的生长、光合作用、叶片N和氨基酸含量以及N同化相关酶活性的影响。结果表明:(1)单一接种AMF或根瘤菌以及联合接种AMF和根瘤菌均显著增加了白三叶的株高、匍匐茎长度、叶片数、地上部生物量、总生物量、叶绿素b和总叶绿素含量、稳态光量子效率和叶片N含量,这种增强效应是联合接种>单一AMF>单一根瘤菌>未接种处理。(2)联合接种AMF和根瘤菌显著增加了白三叶叶片中丙氨酸、精氨酸、天冬酰胺、天冬氨酸、谷氨酰胺、谷氨酸和组氨酸的含量,显著提升了叶片N同化相关酶如硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶、谷氨酸脱氢酶、天冬酰胺合成酶和天冬氨酸转氨酶的活性,显著促进AMF对白三叶根系的侵染。综上认为,联合接种AMF和根瘤菌通过激活N同化相关酶活性有效促进N同化,产生更多氨基酸,进一步促进白三叶植株生长; 联合接种AMF和根瘤菌具有协同作用,有效促进了白三叶的N同化。  相似文献   

18.
Summary Three distinct loci (designated regions III, IV and V) were identified in the 14 kb Nod region of Rhizobium trifolii strain ANU843 and were found to determine the host range characteristics of this strain. Deletion of region III or region V only from the 14 kb Nod region affected clover nodulation capacity. The introduction to R. Leguminosarum of DNA fragments on multicopy vectors carrying regions III, IV and V (but not smaller fragments) extended the host range of R. leguminosarum so that infection threads and nodules occurred on white clover plants. The same DNA fragments were introduced to the Sym plasmid-cured strain (ANU845) carrying the R. meliloti recombinant nodulation plasmid pRmSL26. Plasmid pRmSL26 alone does not confer root hair curling or nodulation on clover plants. However, the introduction to ANU845 (pRmSL26) of a 1.4 kb fragment carrying R. trifolii region IV only, resulted in the phenotypic activation of marked root hair curling ability to this strain on clovers but no infection events or nodules resulted. Only the transfer of regions III, IV and V to strain ANU845 (pRmSL26) conferred normal nodulation and host range ability of the original wild type R. trifolii strain. These results indicate that the host range genes determine the outcome of early plant-bacterial interactions primarily at the stage of root hair curling and infection.  相似文献   

19.
Receptor Site on Clover and Alfalfa Roots for Rhizobium   总被引:17,自引:4,他引:13       下载免费PDF全文
Sites on white clover and alfalfa roots that bind Rhizobium trifolii and R. meliloti capsular polysaccharides, respectively, were examined by fluorescence microscopy. Fluorescein isothiocyanate-labeled capsular material from R. trifolii bound specifically to root hairs of clover but not alfalfa. Binding was most intense at the root hair tips. Treatment of clover roots with 2-deoxyglucose (2-dG) prevented binding of R. trifolii capsular material to the roots. The sugar 2-dG enhanced the elution of clover root protein, which could bind to and specifically agglutinate R. trifolii but not R. meliloti or R. japonicum. The mild elution procedure left the roots intact. Agglutination of R. trifolii and passive hemagglutination of rabbit erythrocytes coated with the capsular material of R. trifolii were specifically inhibited by 2-dG. These results suggest that clover roots contain proteins that cross-link complementary polysaccharides on the surface of clover root hairs and infective R. trifolii through 2-dG-sensitive binding sites. Alfalfa root hairs were shown to specifically bind to a surface polysaccharide from R. meliloti.  相似文献   

20.
Summary Several strains ofRhizobium trifolii were tested for their ability to synthesize and utilize phenolate or hydroxamate types of siderophores. None of the nodulating strains ofR. trifolii was able to produce detectable amounts of siderophores. Only the non-nodulating strainR. trifolii AR6 formed a phenolate siderophore, which stimulated the growth of the siderophore-negative mutant AR65. Other strains ofR. trifolii could not utilize iron from exogenously supplied Desferal, pseudobactin or citrate. The siderophore fromR. trifolii AR6 and 2,3-dihydroxybenzoic acid slightly stimulated the growth of someR. trifolii strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号