首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The deep-sea tube worm Riftia pachyptila (Vestimentifera) from hydrothermal vents lives in an intimate symbiosis with a sulfur-oxidizing bacterium. That involves specific interactions and obligatory metabolic exchanges between the two organisms. In this work, we analyzed the contribution of the two partners to the biosynthesis of pyrimidine nucleotides through both the "de novo" and "salvage" pathways. The first three enzymes of the de novo pathway, carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase, were present only in the trophosome, the symbiont-containing tissue. The study of these enzymes in terms of their catalytic and regulatory properties in both the trophosome and the isolated symbiotic bacteria provided a clear indication of the microbial origin of these enzymes. In contrast, the succeeding enzymes of this de novo pathway, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase, were present in all body parts of the worm. This finding indicates that the animal is fully dependent on the symbiont for the de novo biosynthesis of pyrimidines. In addition, it suggests that the synthesis of pyrimidines in other tissues is possible from the intermediary metabolites provided by the trophosomal tissue and from nucleic acid degradation products since the enzymes of the salvage pathway appear to be present in all tissues of the worm. Analysis of these salvage pathway enzymes in the trophosome strongly suggested that these enzymes belong to the worm. In accordance with this conclusion, none of these enzyme activities was found in the isolated bacteria. The enzymes involved in the production of the precursors of carbamyl phosphate and nitrogen assimilation, glutamine synthetase and nitrate reductase, were also investigated, and it appears that these two enzymes are present in the bacteria.  相似文献   

2.
We report here the structural determination of N-linked oligosaccharides found on extracellular hemoglobins of the hydrothermal vent tube worm Riftia pachyptila. Structures were elucidated by a combination of electrospray ionization tandem mass spectrometry, matrix- assisted laser desorption/ionization mass spectrometry, normal-phase high performance liquid chromatography, and exoglycosidase digestion. The sugar chains were found to consist mainly of high-mannose-type glycans with some structures partially capped by one or two terminal glucose residues. The present study represents the first report of the occurrence of glucose capping of N-linked carbohydrates in a secreted glycoprotein of a metazoan. Previously, glucose capping has only been described for a membrane-bound surface glycoprotein from the unicellular parasite Leishmania mexicana amazonensis.   相似文献   

3.
The present study describes the distribution and properties of enzymes involved in arginine metabolism in Riftia pachyptila, a tubeworm living around deep sea hydrothermal vents and known to be engaged in a highly specific symbiotic association with a bacterium. The results obtained show that the arginine biosynthetic enzymes, carbamyl phosphate synthetase, ornithine transcarbamylase, and argininosuccinate synthetase are present in all of the tissues of the worm and in the bacteria. Thus, Riftia and its bacterial endosymbiont can assimilate nitrogen and carbon via this arginine biosynthetic pathway. The kinetic properties of ornithine transcarbamylase strongly suggest that neither Riftia nor the bacteria possess the catabolic form of this enzyme belonging to the arginine deiminase pathway, the absence of this pathway being confirmed by the lack of arginine deiminase activity. Arginine decarboxylase and ornithine decarboxylase are involved in the biosynthesis of polyamines such as putrescine and agmatine. These activities are present in the trophosome, the symbiont-harboring tissue, and are higher in the isolated bacteria than in the trophosome, indicating that these enzymes are of bacterial origin. This finding indicates that Riftia is dependent on its bacterial endosymbiont for the biosynthesis of polyamines that are important for its metabolism and physiology. These results emphasize a particular organization of the arginine metabolism and the exchanges of metabolites between the two partners of this symbiosis.  相似文献   

4.
ATP sulfurylase (ATP: sulfate adenylyltransferase, EC 2.7.7.4) was extensively purified from trophosome tissue of Riftia pachyptila, a tube worm that thrives in deep ocean hydrothermal vent communities. The enzyme is probably derived from the sulfide-oxidizing bacteria that densely colonize the tissue. Glycerol (20% v/v) protected the enzyme against inactivation during purification and storage. The native enzyme appears to be a dimer (MW 90 kDa +/- 10%) composed of identical size subunits (MW 48 kDa +/- 5%). At pH 8.0, 30 degrees C, the specific activities (units x mg protein-1) of the most highly purified sample are as follows: ATP synthesis, 370; APS synthesis, 23; molybdolysis, 65; APSe synthesis or selenolysis, 1.9. The Km values for APS and PPi at 5 mM Mg2+ are 6.3 and 14 microM, respectively. In the APS synthesis direction, the Km values for MgATP and SO4(2-) are 1.7 and 27 mM, respectively. The Km values for MgATP and MoO4(2-) in the molybdolysis reaction are 80 and 150 microM, respectively. The Kia for MgATP is 0.65 mM. APS is a potent inhibitor of molybdolysis, competitive with both MgATP and MoO4(2-) (Kiq = 2.2 microM). However, PPi (+ Mg2+) is virtually inactive as a molybdolysis inhibitor. Oxyanion dead end inhibitors competitive with SO4(2-) include (in order of decreasing potency) ClO4- greater than FSO3- (Ki = 22 microM) greater than ClO3- greater than NO3- greater than S2O3(2-) (Ki's = 5 and 43 mM). FSO3- is uncompetitive with MgATP, but S2O3(2-) is noncompetitive. Each subunit contains two free SH groups, at least one of which is functionally essential. ATP, MgATP, SO4(2-), MoO4(2-), and APS each protect against inactivation by excess 5,5'-dithiobis-(2-nitrobenzoate). FSO3- is ineffective as a protector unless MgATP is present. PPi (+Mg2+) does not protect against inactivation. Riftia trophosome contains little or no "ADP sulfurylase." The high trophosome level of ATP sulfurylase (67-176 ATP synthesis units x g fresh wt tissue-1 from four different specimens, corresponding to 4-10 microM enzyme sites), the high kcat of the enzyme for ATP synthesis (296 s-1), and the high Km's for MgATP and SO4(2-) are consistent with a role in ATP formation during sulfide oxidation, i.e., the physiological reaction is APS + MgPPi in equilibrium SO4(2-) + MgATP.  相似文献   

5.
31P nuclear magnetic resonance (NMR) was used to study the major phosphorylated compounds visible in perchloric extracts of three body regions of the vestimentiferan worm Riftia pachyptila: winged vestimentum, trunk and segmented posterior opisthosome. Two phosphagens (PGs) were present in vestimentum and opisthosome. The major resonance corresponded to those of phosphoarginine and phosphotaurocyamine, which cannot be discriminated on 31P NMR spectra. We have identified four distinct phosphodiesters (PDEs) in these tissues: glycerophosphorylethanolamine (GPE), serine ethanolamine phosphodiester (SEP), glycero-phosphorylcholine (GPC) and threonine ethanolamine phosphodiester (TEP). Three phosphonates or derivates (PAs) were observed in the three body regions. The minor one was identified as 2-aminoethyl phosphonate (2-AEP). The phosphorus profile of the trunk was appreciably different: one additional resonance in the PDE region and only one phosphagen peak were observed.  相似文献   

6.
A frozen-hydrated specimen of the V1 hemoglobin of the hydrothermal vent tube worm Riftia pachyptila was observed in the electron microscope and subjected to three-dimensional reconstruction by the method of random conical tilt series. The 3D volume possesses a D6 point-group symmetry. When viewed along its 6-fold axis the vertices of its upper hexagonal layer are 16° clockwise rotated compared to those of the lower layer. A central linker complex is decorated by 12 hollow globular substructures. The linker complex comprises (i) a central hexagonal toroid, (ii) two internal bracelets onto which the hollow globular substructures are built, and (iii) six structures connecting the two hexagonal layers. The hollow globular substructures, related to the dodecamers of globin chains resulting from the dissociation of the hexagonal bilayer hemoglobin, have a local pseudo 3-fold symmetry and are composed each of three elongated structures visible when the volume is displayed at high threshold. At a resolution of 36 Å, the 3D volumes of the hexagonal bilayer hemoglobins of Riftia pachyptyla and of the leech Macrobdella decora look almost perfectly identical. © 1996 Wiley-Liss, Inc.  相似文献   

7.
We carried out a 16S rDNA-based molecular survey of the prokaryotic diversity associated with the chitin tubes of the giant vent tubeworm Riftia pachyptila (collected at the East Pacific Rise, 9 degrees N and 13 degrees N). Scanning electron microscopy showed dense microbial populations, particularly on the external surface of the middle and upper tube regions, which included very diverse prokaryotic morphotypes. We used archaeal- and bacterial-specific primers for polymerase chain reaction (PCR) amplification, but only bacterial amplicons were obtained. We analysed a total of 87 clones. Most belonged to the epsilon-Proteobacteria, but also to the delta-, alpha- and gamma-Proteobacteria. A broad diversity of phylotypes belonging to other bacterial divisions was detected, including Verrucomicrobia, the Cytophaga-Flavobacterium-Bacteroides group and the candidate division OP8. We also retrieved a sequence, R76-B150, of uncertain phylogenetic affiliation, which could represent a novel candidate division. The sequence of the R. pachyptilagamma-proteobacterial endosymbiont was not detected. The bacterial diversity found suggests that complex metabolic interactions, particularly based on sulphur chemistry, may be occurring in different microniches of the R. pachyptila tubes.  相似文献   

8.
The symbiotic hydrothermal vent tubeworm Riftia pachyptila needs to supply its internal bacterial symbionts with carbon dioxide, their inorganic carbon source. Our aim in this study was to characterize the carbonic anhydrase (CA) involved in CO(2) transport and conversion at various steps in the plume and the symbiotic tissue, the trophosome. A complete 1209 kb cDNA has been sequenced from the trophosome and identified as a putative alpha-CA based on BLAST analysis and the similarities of total deduced amino-acid sequence with those from the GenBank database. In the plume, the putative CA sequence obtained from cDNA library screening was 90% identical to the trophosome CA, except in the first 77 nucleotides downstream from the initiation site identified on trophosome CA. A phylogenetic analysis showed that the annelidan Riftia CA (CARp) emerges clustered with invertebrate CAs, the arthropodan Drosophila CA and the cnidarian Anthopleura CA. This invertebrate cluster appeared as a sister group of the cluster comprising mitochondrial and cytosolic isoforms in vertebrates: CAV, CAI II and III, and CAVII. However, amino acid sequence alignment showed that Riftia CA was closer to cytosolic CA than to mitochondrial CA. Combined biochemical approaches revealed two cytosolic CAs with different molecular weights and pI's in the plume and the trophosome, and the occurrence of a membrane-bound CA isoform in addition to the cytosolic one in the trophosome. The physiologic roles of cytosolic CA in both tissues and supplementary membrane-bound CA isoform in the trophosome in the optimization of CO(2) transport and conversion are discussed.  相似文献   

9.
Ecological processes at deep‐sea hydrothermal vents on fast‐spreading mid‐ocean ridges are punctuated by frequent physical disturbance, often accompanied by a high occurrence of population turnover. To persist through local extinction events, sessile invertebrate species living in these geologically and chemically dynamic habitats depend on larval dispersal. We characterized 12 polymorphic microsatellite loci from one such species, the siboglinid tubeworm Riftia pachyptila. All loci conformed to Hardy–Weinberg expectations without linkage (mean HE = 0.9405, mean NA = 20.25). These microsatellites are being employed in the investigation of spatial and temporal population genetic structure in the eastern Pacific Ocean.  相似文献   

10.
A study was made of the activity of nucleoside diphosphatase (NDPase, EC 3.6.1.16) and nucleoside triphosphatase (NTPase, EC 3.6.1.15) that catalyze enzymatic dephosphorylation of UDP, CDP, UTP, and CTP in mitochondria and postmitochondrial supernatant fraction of rat liver 30 min, 1, 3, 6 and 24 h following 60Co-gamma-irradiation with a dose of 774 mC/kg. The observed phase changes in the enzyme activity depended on the times of exposure, a cell fraction, and nucleotides under study. Both uridylic and cytidylic nucleotides exhibited a significant increase in the their enzymatic disintegration being more pronounced at a comparatively later times, that is, 6 h, and particularly, 24 h after irradiation.  相似文献   

11.
We have determined the amino acid sequence of the alpha chain of a fibril-forming collagen from the body wall of the marine invertebrate Riftia pachyptila (vestimentifera) by Edman degradation. The pepsin-solubilized collagen chain consists of a 1011-residue triple-helical domain and short remnants of N- and C-telopeptides. The triple-helical sequence showed one imperfection of the collagen Gly-Xaa-Yaa triplet repeat structure due to a Gly-->Ala substitution. This imperfection is correlated to a prominent kink in the molecule observed by electron microscopy. No strong sequence similarity was found with the fibril-forming vertebrate collagen types I-III, V and XI except for the invariant Gly residues. However, one of the two consensus cross-linking sequences was well conserved. The Riftia collagen shared with the vertebrate collagens many post-translational modifications. About 50% of the Pro and Lys residues are found in the Yaa position and were extensively hydroxylated to 4-hydroxyproline (4Hyp) and hydroxylysine (Hyl). A few proline residues in Xaa position were partially hydroxylated to either 4Hyp or 3Hyp. Despite the low sequence similarity, Riftia collagen was a potent adhesion substrate for two human cell lines. Cell adhesion could be inhibited by antibodies against the integrin beta 1 subunit but not by RGD peptides. This biological activity is apparently conserved in fibril-forming collagens of distantly related species but does not require the two RGD sequences present in Riftia collagen.  相似文献   

12.
The giant extracellular hexagonal bilayer hemoglobin (HBL-Hb) of the deep-sea hydrothermal vent tube worm Riftia pachyptila is able to transport simultaneously O(2) and H(2)S in the blood from the gills to a specific organ: the trophosome that harbors sulfide-oxidizing endosymbionts. This vascular HBL-Hb is made of 144 globins from which four globin types (A1, A2, B1, and B2) coevolve. The H(2)S is bound at a specific location (not on the heme site) onto two of these globin types. In order to understand how such a function emerged and evolved in vestimentiferans and other related annelids, six partial cDNAs corresponding to the six globins known to compose the multigenic family of R. pachyptila have been identified and sequenced. These partial sequences (ca. 120 amino acids, i.e., 80% of the entire protein) were used to reconstruct molecular phylogenies in order to trace duplication events that have led to the family organization of these globins and to locate the position of the free cysteine residues known to bind H(2)S. From these sequences, only two free cysteine residues have been found to occur, at positions Cys + 1 (i.e., 1 a.a. from the well-conserved distal histidine) and Cys + 11 (i.e., 11 a.a. from the same histidine) in globins B2 and A2, respectively. These two positions are well conserved in annelids, vestimentiferans, and pogonophorans, which live in sulfidic environments. The structural comparison of the hydrophobic environment that surrounds these cysteine residues (the sulfide-binding domain) using hydrophobic cluster analysis plots, together with the cysteine positions in paralogous strains, suggests that the sulfide-binding function might have emerged before the annelid radiation in order to detoxify this toxic compound. Moreover, globin evolutionary rates are highly different between paralogous strains. This suggests that either the two globin subfamilies involved in the sulfide-binding function (A2 and B2) have evolved under strong directional selective constraints (negative selection) and that the two other globins (A1 and B1) have accumulated more substitutions through positive selection or have evolved neutrally after a relaxation of selection pressures. A likely scenario on the evolution of this multigenic family is proposed and discussed from this data set.  相似文献   

13.
Riftia pachyptila (Vestimentifera) is a giant tubeworm living around the volcanic deep-sea vents of the East Pacific Rise. This animal is devoid of a digestive tract and lives in an intimate symbiosis with a sulfur-oxidizing chemoautotrophic bacterium. This bacterial endosymbiont is localized in the cells of a richly vascularized organ of the worm: the trophosome. These organisms are adapted to their extreme environment and take advantage of the particular composition of the mixed volcanic and sea waters to extract and assimilate inorganic metabolites, especially carbon, nitrogen, oxygen and sulfur. The high molecular mass hemoglobin of the worm is the transporter for both oxygen and sulfide. This last compound is delivered to the bacterium which possesses the sulfur oxidizing respiratory system, which produces the metabolic energy for the two partners. CO2 is also delivered to the bacterium where it enters the Calvin-Benson cycle. Some of the resulting small carbonated organic molecules are thus provided to the worm for its own metabolism. As far as nitrogen assimilation is concerned, NH3 can be used by the two partners but nitrate can be used only by the bacterium. This very intimate symbiosis applies also to the organization of metabolic pathways such as those of pyrimidine nucleotides and arginine. In particular, the worm lacks the first three enzymes of the de novo pyrimidine biosynthetic pathways as well as some enzymes involved in the biosynthesis of polyamines. The bacterium lacks the enzymes of the pyrimidine salvage pathway. This symbiotic organization constitutes a very interesting system to study the molecular and metabolic basis of biological adaptation.  相似文献   

14.
Fate of nitrate acquired by the tubeworm Riftia pachyptila   总被引:1,自引:0,他引:1  
The hydrothermal vent tubeworm Riftia pachyptila lacks a mouth and gut and lives in association with intracellular, sulfide-oxidizing chemoautotrophic bacteria. Growth of this tubeworm requires an exogenous source of nitrogen for biosynthesis, and, as determined in previous studies, environmental ammonia and free amino acids appear to be unlikely sources of nitrogen. Nitrate, however, is present in situ (K. Johnson, J. Childress, R. Hessler, C. Sakamoto-Arnold, and C. Beehler, Deep-Sea Res. 35:1723-1744, 1988), is taken up by the host, and can be chemically reduced by the symbionts (U. Hentschel and H. Felbeck, Nature 366:338-340, 1993). Here we report that at an in situ concentration of 40 microM, nitrate is acquired by R. pachyptila at a rate of 3.54 micromol g(-1) h(-1), while elimination of nitrite and elimination of ammonia occur at much lower rates (0. 017 and 0.21 micromol g(-1) h(-1), respectively). We also observed reduction of nitrite (and accordingly nitrate) to ammonia in the trophosome tissue. When R. pachyptila tubeworms are exposed to constant in situ conditions for 60 h, there is a difference between the amount of nitrogen acquired via nitrate uptake and the amount of nitrogen lost via nitrite and ammonia elimination, which indicates that there is a nitrogen "sink." Our results demonstrate that storage of nitrate does not account for the observed stoichiometric differences in the amounts of nitrogen. Nitrate uptake was not correlated with sulfide or inorganic carbon flux, suggesting that nitrate is probably not an important oxidant in metabolism of the symbionts. Accordingly, we describe a nitrogen flux model for this association, in which the product of symbiont nitrate reduction, ammonia, is the primary source of nitrogen for the host and the symbionts and fulfills the association's nitrogen needs via incorporation of ammonia into amino acids.  相似文献   

15.
The deep-sea tube worm Riftia pachyptila Jones possesses a multi-hemoglobin system with three different extracellular Hbs: two dissolved in the vascular blood, V1 (ca. 3,500 kDa) and V2 (ca. 400 kDa), and one in the coelomic fluid, C1 (ca. 400 kDa). V1 Hb consists of four heme-containing, globin chains (b–e) and four linker chains (L1–L4). V2 and C1 Hbs are exclusively built from globin chains, six for V2 (a–f) and five for C1 (a–e). The complete amino acid sequence of the isolated monomeric globin chain b, common to all Riftia Hbs, has been determined by automated Edman degradation sequencing of the peptides derived by digestion with trypsin, chymotrypsin, thermolysin, and CNBr. This polypeptide chain is composed of 144 amino acid residues, providing a Mr of 16, 135.0 Da. Moreover, the primary sequence of chain b revealed 3 Cys residues at position 4, 75, and 134. Cys-4 and Cys-134 are located at positions where an intra-chain disulfide bridge is formed in all annelid, vestimentiferan, or pogonophoran chains, but Cys-75 is located at a unique position only found in three globin chains belonging to Lamellibrachia and Oligobrachia, a vestimentiferan and a pogonophoran. In both groups, Hbs can bind sulfide reversibly to fuel the chemosynthetic process of the symbiotic bacteria they harbor. Sulfide-binding experiments performed on purified Hb fractions (i.e., V1, V2, and C1 Hbs) suggest that free Cys residues on globin chains, and the numerous Cys found in linker chains, as determined previously by ESI-MS, may be the sulfide binding-sites. Blocking the free Cys by N-ethylmaleimide, we confirmed that free cysteines were involved in sulfide-binding but did not account for the whole sulfide-binding capacity of V1 Hb. Furthermore, a phylogenetic tree was constructed from 18 globin-like chains of annelid, vetimentiferan, and pogonophoran extracellular Hbs to clarify the systematic position of tubeworms. Riftia chain b clearly belongs to the “strain A” family with 30 to 80% identity with the other sequences analyzed. Its position in the tree confirmed a close relationship between vestimentiferan, pogonophoran, and annelid Hbs. Proteins 29:562–574, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.  相似文献   

17.
The hydrothermal vent tubeworm Riftia pachyptila lacks a mouth and gut and lives in association with intracellular, sulfide-oxidizing chemoautotrophic bacteria. Growth of this tubeworm requires an exogenous source of nitrogen for biosynthesis, and, as determined in previous studies, environmental ammonia and free amino acids appear to be unlikely sources of nitrogen. Nitrate, however, is present in situ (K. Johnson, J. Childress, R. Hessler, C. Sakamoto-Arnold, and C. Beehler, Deep-Sea Res. 35:1723–1744, 1988), is taken up by the host, and can be chemically reduced by the symbionts (U. Hentschel and H. Felbeck, Nature 366:338–340, 1993). Here we report that at an in situ concentration of 40 μM, nitrate is acquired by R. pachyptila at a rate of 3.54 μmol g−1 h−1, while elimination of nitrite and elimination of ammonia occur at much lower rates (0.017 and 0.21 μmol g−1 h−1, respectively). We also observed reduction of nitrite (and accordingly nitrate) to ammonia in the trophosome tissue. When R. pachyptila tubeworms are exposed to constant in situ conditions for 60 h, there is a difference between the amount of nitrogen acquired via nitrate uptake and the amount of nitrogen lost via nitrite and ammonia elimination, which indicates that there is a nitrogen “sink.” Our results demonstrate that storage of nitrate does not account for the observed stoichiometric differences in the amounts of nitrogen. Nitrate uptake was not correlated with sulfide or inorganic carbon flux, suggesting that nitrate is probably not an important oxidant in metabolism of the symbionts. Accordingly, we describe a nitrogen flux model for this association, in which the product of symbiont nitrate reduction, ammonia, is the primary source of nitrogen for the host and the symbionts and fulfills the association's nitrogen needs via incorporation of ammonia into amino acids.  相似文献   

18.
19.
The facultative symbiont of Riftia pachyptila , named here Candidatus Endoriftia persephone , has evaded culture to date, but much has been learned regarding this symbiosis over the past three decades since its discovery. The symbiont population metagenome was sequenced in order to gain insight into its physiology. The population genome indicates that the symbionts use a partial Calvin–Benson Cycle for carbon fixation and the reverse TCA cycle (an alternative pathway for carbon fixation) that contains an unusual ATP citrate lyase. The presence of all genes necessary for heterotrophic metabolism, a phosphotransferase system, and dicarboxylate and ABC transporters indicate that the symbiont can live mixotrophically. The metagenome has a large suite of signal transduction, defence (both biological and environmental) and chemotaxis mechanisms. The physiology of Candidatus Endoriftia persephone is explored with respect to functionality while associated with a eukaryotic host, versus free-living in the hydrothermal environment.  相似文献   

20.
The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm’s trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号