首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the coreceptor Orco in insect olfactory transduction   总被引:1,自引:0,他引:1  
Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo—as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR–Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.  相似文献   

2.
植物源挥发物对昆虫信息素的增效作用及其增效机制   总被引:4,自引:0,他引:4  
植物源挥发物和昆虫信息素是昆虫的重要信息物质,二者协同作用以调节昆虫的行为.通过增加触角电位、信息素接收神经元动作电位和脉冲频率,特异性植物源挥发物能显著增强昆虫性信息素和聚集信息素的引诱力.这种对昆虫信息素的增效作用受昆虫体内的章鱼胺及其受体介导.特异性植物源挥发物和章鱼胺受体结合,降低性信息素接收神经元对性信息素的反应阈值,增强性信息素接收神经元敏感性.这可能是植物源挥发物对昆虫信息素具有增效作用的主要机制.  相似文献   

3.
Changes in the excitability of the neuron (amplitude, excitability threshold, rate of action potential transduction), as well as changes in the viscosity of the plasma membrane of the nerve and membranes of subcellular organelles, induced by the action of a weak magnetic field, have been studied by the methods of extracellular registration of membrane potential and combination scattering. It was found that only the threshold of excitability in intact nervous fibers increases by the action of this field. It was proven that the conformation of C40 carotenoids localized not only in plasma membranes but also in subcellular membranes of the neuron changes in a weak magnetic field. It is assumed that the changes in the excitability of the neuron by the action of weak magnetic field are due to changes in the orderliness of membrane lipids and the content of oxygen in the cytoplasm.  相似文献   

4.
The dynamic properties of sensory transduction in an insect mechanoreceptor, the femoral tactile spine of the cockroach, Periplaneta americana, have been studied by measurement of the frequency response function between randomly varying movement of the tactile spine and afferent action potentials from the sensory neuron which innervates it. The frequency response function of the mechanoreceptor has been characterized over a frequency range which is more than ten times larger than has previously been used for this preparation. Also the effects of varying the amplitude of the stimulating signal have been studied by the use of a range of input signal strengths from about 0.5 to 10 m R.M.S. displacement. The measured frequency response functions can all be well fitted by a theoretical relationship which is a fractional exponent of complex frequency, provided that the time delay caused by conduction of the action potentials from the sensory dendrite to the recording electrodes is taken into account. Under small signal conditions the exponent of complex frequency is close to 0.5 but with larger displacements its value decreases to about half this value. The overall sensitivity of the receptor, as measured by the gain of the frequency response function at a natural frequency of 1 radian/s, is not significantly altered by changes in the input movement amplitude, so that the receptor behaves linearly in this respect. However, the mean rate of action potential occurrence is not linearly related to input movement amplitude. These results are discussed in terms of current theories of sensory transduction and the possible role of tubular bodies in the dynamic behaviour of insect cuticular mechanoreceptors.  相似文献   

5.
Summary The femoral tactile spine of the cockroach (Periplaneta americana) contains a single sensory neuron, which adapts rapidly and completely to step deformations of the spine. Techniques for stable intracellular recording from the tactile spine neuron have recently been established, allowing electrophysiological investigation of mechanotransduction and adaptation in this sensory neuron. However, intracellular recordings from the neuron produce a wide range of action potential heights and thresholds, raising the possibility that some penetrations are in adjacent, but closely coupled supporting glial cells. This problem is exacerbated because the cell cannot be visualized during penetration.Systematic measurements of action potential heights and thresholds were made in tactile spine cells, together with identification of some penetrated cells by intracellular injection of Lucifer Yellow. All stained cells were clearly sensory neurons, although their action potentials amplitudes varied from 9 mV to 80 mV. Smaller action potentials were broader than larger action potentials, and the changes in height and shape could be explained by a simple cable conduction model using measured morphological and electrical parameters. The model could also account for the observed relationship between action potential height and threshold.These results indicate that reliable recording from the tactile spine neuron is possible, but that variability in the positions of the penetration or the spike initiating zone cause an apparently wide range of electrophysiological measurements.  相似文献   

6.
7.
J. Neurochem. (2012) 122, 1145-1154. ABSTRACT: Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain.  相似文献   

8.
Response properties of the receptor potential at steady state were analyzed in a biophysical model of an olfactory sensory neuron embedded in a multicell environment. The neuron structure was described as a set of several identical dendrites (or cilia) bearing the transduction mechanisms, joined to a nonsensory part—dendritic knob, soma, and axon. The different ionic compositions of the media surrounding the neuron sensory and nonsensory parts and the extraneuronal voltage sources, which both result from the presence of auxiliary cells, were also taken into account. Analytical solutions were found to describe how the receptor potential at the nonsensory part responds to a uniform change in the odorant-dependent conductance resulting from odorant stimulation of the sensory dendrites. We investigated the influence of various geometrical and electrical parameters on the receptor-potential response in the classical model neuron within a homogeneous environment and in the model neuron surrounded with auxiliary cells. First, it was found that the maximum amplitude of the receptor potential is independent of the neuron structure in the absence of auxiliary cells but not in their presence. In the latter case, the amplitude decreases with the length and number of sensory dendrites and with the input resistance of the nonsensory part. Second, the sensitivity (as measured by the increase in membrane conductance at half-maximum response) of the neuron model in the absence of auxiliary cells is higher, but its dynamic range is narrower than in their presence. The dynamic range is wide and the sensitivity low when the input resistance of the nonsensory part is small and the sensory dendrite is unbranched. Both sensitivity and dynamic range are higher for a longer dendrite. These results help understand the morphology of insect olfactory sensilla and can be generalized to other neuron types.  相似文献   

9.
Microtubules are prominent cellular components of the mechanosensory and chemosensory sensilla associated with the insect cuticle, and a range of hypotheses have been proposed to account for their role in sensory transduction. Chemical agents such as colchicine and vinblastine, which dissociate microtubules, also interfere with transduction in these sensilla, and this has been attributed to their anti-microtubule activity. We have now examined the dynamic properties of sensory transduction in the mechanosensitive neuron of the cockroach femoral tactile spine, after the application of colchicine, vinblastine and lumicolchicine. Concurrently we have examined the ultrastructure of the same sensory ending by transmission electron microscopy. All of the drugs reduced the mechanical sensitivity o the receptor. Colchicine and vinblastine achieved this reduction without altering the dynamic properties of the receptor but lumicolchicine changed the dynamic response, and increased the relative sensitivity to rapid movements. Conduction velocity, another measure of neuronal function, which relies upon ionic currents flowing through the membrane, was reduced by all three drugs. The effects of the drugs upon the ultrastructure of the sensory ending were also disparate. In the case of colchicine there was complete dissociation of microtubules in the tubular body and distal dendrite before a total loss of mechanical sensitivity. Vinblastine was less effective in dissociating microtubules, although more effective in the reduction of mechanical sensitivity. With lumicolchicine the dominant morphological effect was a severe disruption of the dendritic membrane. We conclude from these experiments that microtubules are not essential in the transduction of mechanical stimuli by cuticular receptors and that the effects of these drugs upon mechanosensitivity are not directly related to their dissociation of the microtubules in the tubular body, but are more likely to arise from actions upon the cell membrane. These actions could include effects upon tubulin in the membrane or upon other membrane components.  相似文献   

10.
Biophysical studies of mechanoreceptors   总被引:4,自引:0,他引:4  
Mechanoreception can be viewed as a series of sequential mechanical and ionic processes that take place in mechanosensitive end organs and in the terminals of the nerves that innervate them. Stimuli act on a transducer after being transmitted through some material having a combination of elastic and viscoelastic properties. Channels that open under membrane loading have recently been described in muscle cells and are presented as a model for transduction. When open these channels are cation specific. Ions passing through transducer channels depolarize a spike-initiating zone on the cell. These currents may also activate other conductances in the cell, so that the total generator current may have many components. In many mechanoreceptors, action potential initiation results in activation of an electrogenic Na+ pump at the spike-initiation zone, which modifies the threshold for subsequent action potentials. Action potentials initiated in the many branches of a single sensory axon interact at the branching point of the axon. The rules governing this interaction are complex. The above factors, together or separately, are responsible for the dynamic responses and adaptation observed in mechanoreceptors.  相似文献   

11.
1. The femoral tactile spine of the cockroach is a mechanoreceptor with a single sensory neuron. The response to a step movement is a burst of action potentials which decays to zero in about 1 s. This rapid adaptation is a property of the action potential initiating region of the neuron. 2. The oxidizing agents chloramine-T and N-chlorosuccinimide selectively and irreversibly remove sodium channel inactivation from neurons in several preparations and are believed to act by oxidation of methionine or cysteine residues in the proteins of the sodium channel. 3. Chloramine-T and N-chlorosuccinimide, applied for a controlled time period, eliminated the rapid adaptation of the tactile spine neuron to an electrical depolarization. After treatment it fired tonically in response to a steady current stimulus. Longer applications of the agents eventually raised the threshold for action potential initiation. 4. Threshold behavior in the tactile spine neuron was characterized by measuring strength-duration relationships for stimulation with extracellular current pulses at the action potential initiating region. The two oxidizing agents caused a voltage-dependent modification of the dynamic threshold properties which led to the change from rapidly adapting to tonic behavior. 5. Two stronger oxidizing agents, N-bromoacetamide and N-bromosuccinimide, raised the threshold of the neuron without removing rapid adaptation. These two agents act similarly to chloramine-T and N-chlorosuccinimide on sodium inactivation in other neurons but are believed to oxidize the tryptophan, tyrosine and histidine residues of proteins in addition to cysteine and methionine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Calcium channels in neurons mediate a wide variety of essential functions. In addition to contributing to action potential shape, they furnish a substrate that acts as an intracellular second messenger. This study shows that the shape of the neuronal action potential has characteristics that promote long openings of L-type (high threshold) calcium channels. We also present evidence that a change in the firing rate of isolated neurons modulates gating of single calcium channels. This mechanism could be important in modulating neuron excitability and providing a rise in intracellular Ca, when needed.  相似文献   

13.
TRP channels and pain   总被引:2,自引:0,他引:2  
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.  相似文献   

14.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

15.
Insect odorant receptors (ORs) are 7-transmembrane receptors with inverse membrane topology. They associate with the conserved ion channel Orco. As chaperon, Orco maintains ORs in cilia and, as pacemaker channel, Orco controls spontaneous activity in olfactory receptor neurons. Odorant binding to ORs opens OR-Orco receptor ion channel complexes in heterologous expression systems. It is unknown, whether this also occurs in vivo. As an alternative to this ionotropic transduction, experimental evidence is accumulating for metabotropic odor transduction, implicating that insect ORs couple to G-proteins. Resulting second messengers gate various ion channels. They generate the sensillum potential that elicits phasic-tonic action potentials (APs) followed by late, long-lasting pheromone responses. Because it is still unclear how and when Orco opens after odor-OR-binding, we used tip recordings to examine in vivo the effects of the Orco antagonist OLC15 and the amilorides MIA and HMA on bombykal transduction in the hawkmoth Manduca sexta. In contrast to OLC15 both amilorides decreased the pheromone-dependent sensillum potential amplitude and the frequency of the phasic AP response. Instead, OLC15 decreased spontaneous activity, increased latencies of phasic-, and decreased frequencies of late, long-lasting pheromone responses Zeitgebertime-dependently. Our results suggest no involvement for Orco in the primary transduction events, in contrast to amiloride-sensitive channels. Instead of an odor-gated ionotropic receptor, Orco rather acts as a voltage- and apparently second messenger-gated pacemaker channel controlling the membrane potential and hence threshold and kinetics of the pheromone response.  相似文献   

16.

Background

Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. ?? and ??ENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear.

Results

Here we show that deleting ?? and ??ENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro.

Conclusion

Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.  相似文献   

17.
The response of a model olfactory system to a single odorant is quantified by interconnecting three separate stimulus-response relationships. Together, these relationships encompass the deposition of odorant molecules onto an olfactory organ, their movement to the dendrite of the olfactory receptor neuron, their subsequent induction of action potentials, and the processing of induced and spontaneous action potentials by the central nervous system, resulting in perception and a behavioral response. Phenomena discussed within the context of the model include the behavioral threshold, central summation of responses from a number of olfactory neurons, and the effect of organ shape on olfactory detection.The intent of the model is to provide a quantitative conceptual framework for designing and interpreting experiments relating sensory input to perception and behavior. Its utility is particularly evident for insect olfaction since it enables insect sex pheromone behavioral thresholds to be estimated from the literature when bioassays or electrophysiological studies are not possible. It also derives a physiologically meaningful method for comparing behavioral thresholds among different animals, and permits comparisons of different kinds of behavioral responses in the same species. Vertebrate olfaction is treated briefly in a discussion of the effect of sniffing on the threshold of detection.  相似文献   

18.
A variety of sensory receptors show adaptation to dynamic stimuli that can be well characterized as fractional differentiation of the input signal. The cause of this behavior is unknown, but because it can be represented by linear systems theory, it has been assumed to arise during early linear processes of transduction or adaptation, rather than during the nonlinear process of action potential encoding. I measured the action potential encoding properties of an insect mechanoreceptor by direct electrical stimulation of the sensory cell axon and found a dynamic response that is identical to the response given by mechanical stimulation. This indicates that the fractional differentiation is a property of the encoder rather than the transducer.  相似文献   

19.
Selective suppression of hyperactive sensory neurons is an attractive strategy for managing pathological pain. Blocking Na(+) channels to eliminate action potentials and desensitizing transduction channels can both reduce sensory neuron excitability. The novel synthetic vanilloid ligand cap-ET preserves agonist activation of intracellular Ca(2+) signals and large organic cation transport but loses effective electric current induction. Cap-ET can therefore be used to deliver the membrane impermeable Na(+) channel blocker QX-314 to substantially inhibit voltage-activated Na(+) currents. We explored, besides facilitating entry of organic cationic therapeutics, whether cap-ET can also produce receptor desensitization similar to the natural agonist capsaicin. Using the YO-PRO-1 based fluorescent dye uptake assay, we found that cap-ET effectively triggered Ca(2+) dependent desensitization of TRPV1 when the receptor was pre-sensitized with the surrogate oxidative chemical phenylarsine oxide (PAO), suggesting an alternative use of permanently charged cationic capsaicinoids in differential neuronal silencing.  相似文献   

20.
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号