首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclohexanone monooxygenase (CMO) is a soluble flavoenzyme originally isolated from Acinetobacter spp. which carries out Baeyer-Villiger reactions with cyclic ketone substrates. In the present study we cloned the Acinetobacter CMO gene and modified it for facile purification from heterologous expression systems by incorporation of a His(6)-tag at its C-terminus. A single purification step employing metal (Ni(2+))-affinity column chromatography provided essentially homogeneous enzyme in yields of 69-72%. The properties of the purified, recombinant enzymes (rCMO) were compared with that of native CMO (nCMO) isolated from Acinetobacter cultures grown in the presence of cyclohexanone. The specific activities of His(6)-tagged rCMO and nCMO toward their index substrate, cyclohexanone, were similar and ranged from 14 to 20 micromol/min/mg. nCMO and rCMO from the Escherichia coli expression system exhibited molecular masses, determined by electrospray mass spectrometry, of 60,800 and 61,615 Da, respectively, an increase for the recombinant enzyme equivalent to the mass of the His(6)-tag. However, rCMO expressed in Saccharomyces cerevisiae consistently exhibited a mass some 50 Da larger than rCMO expressed in bacteria. Edman degradation confirmed that rCMO purified from the E. coli system and nCMO shared the same N-terminal sequence, whereas no sequence information could be obtained for rCMO expressed in yeast. Therefore, the yeast-expressed enzyme possesses an additional posttranslational modification(s), possibly acylation, at the N-terminus. Expression in E. coli is the preferred system for future site-directed mutagenesis studies and crystallization efforts.  相似文献   

2.
Expression of fusion protein trypsin-streptavidin (TRYPSA)4 in Escherichia coli was evaluated and the protein purified. Protein expression was induced by 1 mM isopropylthio--D-galactoside (IPTG), and the enzyme activity was measured by the hydrolysis rate of p-toluenesulfonyl-l-arginine methyl ester (TAME). Expression of the fusion protein in the cell-free extract decreased with increased induction time; correspondingly, that in the inclusion bodies increased. The total expression in Luria–Bertani broth (LB) and Terrific Broth (TB) media reached the highest levels in 2 hr at 30°C. The optimum expression level was 35 and 48 U/L in LB and TB, respectively. Expression of the fusion protein was verified by Western Blot analysis using streptavidin antiserum, and the fusion protein was purified using a benzamidine Sepharose 6B affinity column at room temperature. The molecular size of the soluble purified fusion protein was determined by size-exclusion chromatography using Superose 12 FPLC. A molecular weight of 39–40 kDa was obtained, indicating that the soluble protein exists as a monomer; thus, the presence of the trypsin domain must prevent the streptavidin domain from tetramer formation.  相似文献   

3.
We purified and characterized a soluble human interferon gamma receptor expressed in Escherichia coli. The soluble receptor comprises the amino acids 15-246 of the encoded protein (Aguet, M., Dembic, Z., and Merlin, G. (1988) Cell 55, 273-280) and was purified from large scale fermentations through four chromatographic steps with an overall recovery of 28%. The refolded soluble receptor shows some heterogeneity on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, where it appears as the major band of 27 kDa molecular mass, accompanied by a few minor bands with molecular masses between 26 and 30 kDa. On reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis it appears as a homogeneous protein of 32 kDa molecular mass. The soluble interferon gamma receptor is an active and stable protein and is recognized by specific antibodies raised against the native receptor. When nonreduced it has the capacity to specifically bind interferon gamma and to compete for the binding of interferon gamma to the cell surface receptor. The observed heterogeneity of the soluble interferon gamma receptor under nonreducing electrophoretic conditions is probably due to different conformational forms resulting from the formation of non-native intramolecular disulfide bonds among the 8 cysteine residues present in the soluble interferon gamma receptor molecule.  相似文献   

4.
Site-directed variants of alpha 1-antitrypsin (alpha 1AT) expressed in a recombinant strain of Escherichia coli have been isolated with an overall process yield of 50% following tangential flow ultrafiltration, anion-exchange, immobilized metal affinity, and hydrophobic interaction chromatography. The primary structure of the purified variants including the integrity of the N- and C-termini has been verified by electrospray mass spectrometry of the intact molecules (44 kDa) for two of the variants (alpha 1AT Leu-358 and alpha 1AT Ala-357, Arg-358). Complementary classical peptide mapping and automated amino acid sequencing have verified 75% of the primary sequence of alpha 1AT Ala-357, Arg-358. Isoelectric focusing in an immobilized pH gradient revealed some microheterogeneity which proved to be reproducible from one purification batch to another. The isolated variants of alpha 1AT did not show any signs of proteolytic degradation during the purification process and proved to be fully active against their target proteases. The described process also allowed the complete removal of endotoxins from the preparations, opening the possibility to evaluate these novel protease inhibitors for their in vivo efficacy in different animal models of human disease.  相似文献   

5.
In the malaria vector Anopheles gambiae, tryptophan 2,3-dioxygenase (TDO) is the only enzyme able to initiate l-tryptophan degradation through the kynurenine pathway. TDO converts l-tryptophan to N-formylkynurenine by catalyzing the heme-dependent oxidative opening of the substrate indole ring. Despite the central role exerted by kynurenines in the physiology of living organisms, only a few insect TDOs have been subjected to biochemical characterization in vitro. We performed a RT-PCR-based analysis of the tissue distribution of TDO mRNA in A. gambiae that revealed a ubiquitous expression of the gene, thus further underlining the importance of the enzyme in the mosquito biology. We developed an expression/purification procedure yielding pure and active recombinant A. gambiae TDO. Spectral analyses showed that the enzyme was purified in its heme-ferric form that was subsequently used to determining the Michaelis-Menten constants of the TDO catalyzed reaction in the presence of reducing agents. The screening of a number of compounds as potential TDO modulators showed that several kynurenines and other Tryptophan-derived molecules interfere with the enzyme activity in vitro. Our study could contribute to understanding TDO regulation in vivo and to the identification of inhibitors to be used to alter Tryptophan homeostasis in the malaria vector.  相似文献   

6.
Human insulin-like growth factor II (IGF-II) was produced in an Escherichia coli ompT strain as a 22.5-kDa fusion protein. IGF-II was fused to the carboxy-terminal of a synthetic 15-kDa IgG-binding protein, originating from staphylococcal protein A, via a unique methionine linker. During fermentation, the fusion protein was exported to the growth medium at levels exceeding 900 mg/liter and subsequently affinity purified on IgG Sepharose followed by ion exchange on S Sepharose. After chemical cleavage with CNBr, yielding an authentic IGF-II molecule, the recombinant IGF-II was purified to homogeneity by a two step procedure involving ion-exchange and reverse-phase HPLC. A substantial fraction of the secreted protein was found to be biologically active, eliminating the need for complex refolding procedures. The yield of highly purified and biologically active IGF-II was 5-7 mg/liter of fermenter broth. The IGF-II produced by this method displayed biochemical, immunological, receptor binding, and biological activity properties equal to those of native IGF-II isolated from human serum.  相似文献   

7.
Sin Nombre virus is a member of the Hantavirus genus, family Bunyaviridae, and is an etiologic agent of hantavirus pulmonary syndrome. The hantavirus nucleocapsid (N) protein plays an important role in the encapsidation and assembly of the viral negative-sense genomic RNA. The Sin Nombre N protein was expressed as a C-terminal hexahistidine fusion in Escherichia coli and initially purified by nickel-affinity chromatography. We developed methods to extract the soluble fraction and to solubilize the remainder of the N protein using denaturants. Maximal expression of protein from native purification was observed after a 1.5-h induction with IPTG (2.4 mg/L). The zwitterionic detergent Chaps did not enhance the yield of native purifications, but increased the yield of protein obtained from insoluble purifications. Both soluble and insoluble materials, purified by nickel-affinity chromatography, were also subjected to Hi Trap SP Sepharose fast-flow (FF) chromatography. Both soluble and insoluble proteins had a similar A(280) profile on the Sepharose FF column, and both suggested the presence of a nucleic acid contaminant. The apparent dissociation constant of the N protein, purified by nickel-affinity and SP Sepharose FF chromatography, and the 5' end of the viral S-segment genome were measured using a filter binding assay. The N protein-vRNA complex had an apparent dissociation constant of 140 nM.  相似文献   

8.
The cotranslational incorporation of selenocysteine into proteins is mediated by a specialized elongation factor, named SelB. Its amino-terminal three domains show homology to elongation factor EF-Tu and accordingly bind GTP and selenocysteyl-tRNASec. In addition, SelB exhibits a long carboxy-terminal extension that interacts with a secondary structure of selenoprotein mRNAs (SECIS element) positioned immediately downstream of the in-frame UGA codons specifying the sites of selenocysteine insertion. In this report, a fast and efficient method for the purification of large amounts of hexahistidine-tagged SelB is presented. After two chromatographic steps, 10 mg pure protein was isolated from 12 g wet cell pellet. Biochemical analysis of the purified protein showed that the tag does not influence the interaction of SelB with guanine nucleotides, SECIS elements, and selenocysteyl-tRNASec. In addition, the fusion protein is fully functional in mediating UGA read-through in vivo. It therefore represents an excellent model for studying the function of SelB and the mechanisms of selenocysteine incorporation.  相似文献   

9.
As a potential anti-tumor protein, tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) has drawn considerable attention. This report presented the purification and characterization ofsoluble TRAIL, expressed as inclusion bodies in E. coli. sTRAIL inclusion bodies were solubilized andrefolded at a high concentration up to 0.9 g/L by a simple dilution method. Refolded protein was purifiedto electrophoretic homogeneity by a single-step immobilized metal affinity chromatography. The purifiedsTRAIL had a strong cytotoxic activity against human pancreatic tumor cell line 1990, with EDs0 about 1.5mg/L. Circular dichroism and fluorescence spectrum analysis showed that the refolded sTRAIL had astructure similar to that of native protein with 13-sheet secondary structure. This efficient procedure ofsTRAIL renaturation may be useful for the mass production of this therapeutically important protein.  相似文献   

10.
MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coli extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coli. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens.  相似文献   

11.
Expression of plant acyl carrier protein (ACP) in Escherichia coli at levels above that of constitutive E. coli ACP does not appear to substantially alter bacterial growth or fatty acid metabolism. The plant ACP expressed in E. coli contains pantetheine and approximately 50% is present in vivo as acyl-ACP. We have purified and characterized the recombinant spinach ACP-I. NH2-terminal amino acid sequencing indicated identity to authentic spinach ACP-I, and there was no evidence for terminal methionine or formylmethionine. Recombinant ACP-I was found to completely cross-react immunologically with polyclonal antibody raised to spinach ACP-I. Recombinant ACP-I was a poor substrate for E. coli fatty acid synthesis. In contrast, Brassica napus fatty acid synthetase gave similar reaction rates with both recombinant and E. coli ACP. Similarly, malonyl-coenzyme A:acyl carrier protein transacylase isolated from E. coli was only poorly able to utilize the recombinant ACP-I while the same enzyme from B. napus reacted equally well with either E. coli ACP or recombinant ACP-I. E. coli acyl-ACP synthetase showed a higher reaction rate for recombinant ACP-I than for E. coli ACP. Expression of spinach ACP-I in E. coli provides, for the first time, plant ACP in large quantities and should aid in both structural analysis of this protein and in investigations of the many ACP-dependent reactions of plant lipid metabolism.  相似文献   

12.
Reported here is the overexpression, purification and partial characterization of recombinant coxsakievirus B3 2A protease (CVB3 2A(pro)) from bacterial cells transformed with a plasmid containing the CVB3 2A(pro) cDNA sequences. The structural investigation showed that the protein contains mostly beta-strand elements and requires Zn(2+) ions as a structural component which appeared to be inhibitory if added exogenously. The purified enzyme activity was optimal at 4 degrees C and had a short half-life at physiological temperature. This feature can be the result of the presence of a high content of beta-structure and also hydrophobic residues in its structure.  相似文献   

13.
Alpha-L-fucosidase (FUC) is a glycosidase involved in the degradation of fucose-containing glycoconjugates. A cDNA representing the complete sequence of human FUC was inserted into the prokaryotic expression vector pGEX-2T. High levels of the glutathione S-transferase (GST) fusion protein were detected in Escherichia coli cells after induction with isopropyl thio-beta-D-galactopyranoside. The GST-FUC protein was mostly found as inclusion bodies and attempts to optimise its expression as a soluble form were unsuccessful. Nevertheless, the recombinant protein was purified by affinity chromatography on glutathione-sepharose and its fucosidase activity was characterised. After thrombin cleavage of the GST tag, the FUC precursor protein was purified by electro-elution.  相似文献   

14.
We have employed a pET-ubiquitin expression system to produce two his-tagged forms of hepatitis C virus (HCV) non-structural protein 5A (NS5A) in Escherichia coli. One derivative contains the full-length protein extended to include a carboxy-terminal hexahistidine tag; the other derivative contains an amino-terminal hexahistidine tag in place of the 32 amino acid amphipathic helix that mediates membrane association. At least 1 mg of each derivative at a purity of 90% could be produced from a 1-L culture. The purified derivatives produced high titer antibody that recognized both p56 and p58 forms of NS5A in Huh-7.5 cells expressing an HCV subgenomic replicon. The NS5A derivatives were efficiently phosphorylated by casein kinase II, leading to at least 5 mol of phosphate incorporated per mole of protein. Interestingly, this level of phosphorylation did not alter the migration of the protein in an SDS-polyacrylamide gel, suggesting that hyperphosphorylation alone is not sufficient to generate the p58 form of NS5A observed in Huh-7 cells. Neither NS5A derivative was capable of inhibiting the eIF2alpha-phosphorylation activity of the activated form of the double-stranded RNA-activated protein kinase, PKR, suggesting that NS5A phosphorylation may be required for this function of NS5A. However, both unphosphorylated derivatives were shown to interact with NS5B, the HCV RNA-dependent RNA polymerase, in solution by using a novel kinase-protection assay. The availability of purified HCV NS5A will permit rigorous biochemical and biophysical characterization of this protein, ultimately providing insight into the function of this protein during HCV genome replication.  相似文献   

15.
The recently cloned cDNA for pea chloroplast thioredoxin f was used to produce, by PCR, a fragment coding for a protein lacking the transit peptide. This cDNA fragment was subcloned into a pET expression vector and used to transform E. coli cells. After induction with IPTG the transformed cells produce the protein, mainly in the soluble fraction of the broken cells. The recombinant thioredoxin f has been purified and used to raise antibodies and analysed for activity. The antibodies appear to be specific towards thioredoxin f and do not recognize other types of thioredoxin. The recombinant protein could activate two chloroplastic enzymes, namely NADP-dependent malate dehydrogenase (NADP-MDH) and fructose 1,6-bisphosphatase (FBPase), both using dithiothreitol as a chemical reductant and in a light-reconstituted/thylakoid assay. Recombinant pea thioredoxin f turned out to be an excellent catalyst for NADP-MDH activation, being the more efficient than a recombinant m-type thioredoxin of Chlamydomonas reinhardtii and the thioredoxin of E. coli. At the concentrations of thioredoxin used in the target enzyme activation assays only the recombinant thioredoxin f activated the FBPase.  相似文献   

16.
The beta-glucosidase encoded by the bglA gene from Bacillus polymyxa was overproduced in Escherichia coli by using a plasmid in which bglA is under control of the lacI promoter. Induction with isopropyl-beta-D-thiogalactopyranoside allowed an increase in the specific activity of the enzyme of about 100 times the basal level of gene expression. The enzyme was purified by a two-step procedure involving salting out with ammonium sulfate and ion-exchange chromatography with DEAE-cellulose. Fractions of beta-glucosidase activity recovered by this procedure, after electrophoresis in an acrylamide gel and staining with silver nitrate, yielded a single band of protein. This band was shown by a zymogram to correspond to beta-glucosidase activity. The purified protein showed an apparent molecular mass of 50 kDa and an isoelectric point of 4.6, values in agreement with those expected from the nucleotide sequence of the gene. Km values of the enzyme, with either cellobiose or p-nitrophenyl-beta-D-glucoside as the substrate, were determined. It was shown that the enzyme is competitively inhibited by glucose. The effects of different metallic ions and other agents were studied. Hg2+ was strongly inhibitory, while none of the other cations tested had any significant effect. Ethanol did not show the stimulating effect observed with other beta-glucosidases. The mechanism of enzyme action was investigated. High-pressure liquid chromatography analysis with cellobiose as the substrate confirmed previous data revealing the formation of two products, glucose and another, unidentified, compound. Results presented here indicate that this compound is cellotriose formed by transglycosylation.  相似文献   

17.
A partial cDNA clone, from the 3′ end of the dragline silk gene was isolated from Nephila clavipes major ampullate glands. This clone contains a 1.7-kb insert, consisting of a repetitive coding region of 1.4-kb and a 0.3-kb nonrepetitive coding region; 1.5-kb of the 1.7-kb fragment was cloned into Escherichia coli and a␣43-kDa recombinant silk protein was expressed. Characterization of the purified protein by Western blot, amino acid composition analysis, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry confirms it to be spider dragline silk. Received: 7 April 1997 / Received revision: 24 July 1997 / Accepted: 25 August 1997  相似文献   

18.
Porphyromonas gingivalis acquires iron and heme from the host environment using gingipains, lipoproteins, and outer-membrane receptors. Recently, we identified and characterized a heme receptor HmuR. The hmuR gene is localized in an operon together with a hmuY gene encoding a putative heme-binding protein. The aim of this study was to overexpress and perform a preliminary analysis of the recombinant HmuY protein. We constructed and examined several recombinant HmuY variants which were overexpressed and purified from Escherichia coli and insect cells. Recombinant HmuY protein was expressed in insect cells at levels similar to those in E. coli cells. This protein is predominantly present in a monomeric form but also dimerizes and several other oligomerization forms were found. Hemin and ATP binding to the purified HmuY showed that this protein may play a regulatory function in hemin utilization in P. gingivalis.  相似文献   

19.
Lipocalin 12 (Lcn12) is a recently identified epididymis-specific protein that might play a significant physiological role in male reproduction. However, the detailed structure and function of Lcn12 remain to be determined. In the present work, we cloned, expressed, and purified the rat Lcn12 (rLcn12) protein in Escherichia coli, introduced the Cys176Ala substitution to eliminate the aggregation problem associated with the wild-type protein. Homology modeling results demonstrated that rLcn12 adopted an eight-stranded, antiparallel β-barrel conformation containing a conserved disulfide bond between Cys98 and Cys203, which was in accordance with the physicochemical properties elucidated by a combination of mass, circular dichroism, and nuclear magnetic resonance spectrometry. The purified rLcn12 protein exhibited a high binding affinity for all-trans retinoic acid in fluorescence titration experiments, implying that rLcn12 could be involved in retinoic acid transport in the epididymis.  相似文献   

20.
The prion protein (PrP) from sheep was produced in large quantities of entire protein in Escherichia coli after fusion with a carboxy-terminal hexahistidine sequence. In contrast, amino-terminal fusion with glutathione S-transferase (GST) revealed a high susceptibility toward cleavage of the protein. Both recombinant proteins were recognised, at variable levels, in Western blots using a panel of antibodies against the 40-56, 89-104, 98-113 and 112-115 sequences of the prion protein, similarly to the abnormal prion protein extracted from scrapie-infected sheep. Interestingly, monoclonal antibody 3F4 was found to react with these three proteins in Western blot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号