首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of Bacillus cereus can produce a heat-stable toxin (cereulide). In this study, 101 Bacillus strains representing 7 Bacillus species were tested for production of heat-stable toxins. Strains of B. megaterium, B. firmus and B. simplex were found to produce novel heat-stable toxins, which showed varying levels of toxicity. B. cereus strains (18 out of 54) were positive for toxin production. Thirteen were of serovar H1, and it was of interest that some were of clinical origin. Two were of serovars 17B and 20, which are not usually implicated in the emetic syndrome. Partial purification of the novel B. megaterium, B. simplex and B. firmus toxins showed they had similar physical characteristics to the B. cereus emetic toxin, cereulide.  相似文献   

2.

Background  

Bacillus cereus and the closely related Bacillus thuringiensis are Gram positive opportunistic pathogens that may cause food poisoning, and the three secreted pore-forming cytotoxins Hbl, Nhe and CytK have been implicated as the causative agents of diarrhoeal disease. It has been proposed that the Hbl toxin is secreted using the flagellar export apparatus (FEA) despite the presence of Sec-type signal peptides. As protein secretion is of key importance in virulence of a microorganism, the mechanisms by which these toxins are secreted were further investigated.  相似文献   

3.
Epidemiology and pathogenesis of Bacillus cereus infections   总被引:6,自引:0,他引:6  
Bacillus cereus is a causative agent in both gastrointestinal and in nongastrointestinal infections. Enterotoxins, emetic toxin (cereulide), hemolysins, and phoshpolipase C as well as many enzymes such as beta-lactamases, proteases and collagenases are known as potential virulence factors of B. cereus. A special surface structure of B. cereus cells, the S-layer, has a significant role in the adhesion to host cells, in phagocytosis and in increased radiation resistance. Interest in B. cereus has been growing lately because it seems that B. cereus-related diseases, in particular food poisonings, are growing in number.  相似文献   

4.
Very different toxins are responsible for the two types of gastrointestinal diseases caused by Bacillus cereus: the diarrhoeal syndrome is linked to nonhemolytic enterotoxin NHE, hemolytic enterotoxin HBL, and cytotoxin K, whereas emesis is caused by the action of the depsipeptide toxin cereulide. The recently identified cereulide synthetase genes permitted development of a molecular assay that targets all toxins known to be involved in food poisoning in a single reaction, using only four different sets of primers. The enterotoxin genes of 49 strains, belonging to different phylogenetic branches of the B. cereus group, were partially sequenced to encompass the molecular diversity of these genes. The sequence alignments illustrated the high molecular polymorphism of B. cereus enterotoxin genes, which is necessary to consider when establishing PCR systems. Primers directed towards the enterotoxin complex genes were located in different CDSs of the corresponding operons to target two toxin genes with one single set of primers. The specificity of the assay was assessed using a panel of B. cereus strains with known toxin profiles and was successfully applied to characterize strains from food and clinical diagnostic labs as well as for the toxin gene profiling of B. cereus isolated from silo tank populations.  相似文献   

5.
AIMS: To determine if cereulide, the emetic toxin produced by Bacillus cereus, is produced by a nonribosomal peptide synthetase (NRPS). METHODS AND RESULTS: NC Y, an emetic strain of Bacillus cereus, was examined for a NRPS gene using PCR with primers recognizing a fragment of a NRPS gene from the cyanobacterium Microcystis. The amplicon was sequenced and compared with other gene sequences using BLAST analysis, which showed that the amplicon from strain NC Y was similar in sequence to peptide synthetase genes in other micro-organisms, including Bacillus subtilis and B. brevis, while no such sequence was found in the complete genome sequence of a nonemetic strain of B. cereus. Specific PCR primers were then designed and used to screen 40 B. cereus isolates previously implicated in outbreaks of foodborne illness. The isolates were also screened for toxin production using the MTT cell cytotoxicity assay. PCR and MTT assay screening of the B. cereus isolates revealed a high correlation between the presence of the NRPS gene and cereulide production. CONCLUSIONS: The results indicate that cereulide is produced by a NRPS complex. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to provide evidence identifying the mechanism of production of cereulide, the emetic toxin of B. cereus. The PCR primers developed in the study allow determination of the potential for cereulide production among isolates of B. cereus.  相似文献   

6.
Abstract A vacuole-formation substance, cereulide of Bacillus cereus , is an emetic toxin in animals. Both oral administration and intraperitoneal injection of cereulide caused dose-dependent emesis in Suncus murinus , a new animal model of emesis. Vagotomy or a 5-HT3 receptor antagonist completely abolished this emetic effect. Therefore, cereulide causes emesis through the 5-HT3 receptor and stimulation of the vagus afferent. We also found that our purified cereulide caused swelling of mitochondria of HEp-2 cells.  相似文献   

7.
Little is known about the process whereby the emetic toxin (or cereulide) of Bacillus cereus is produced. Two cereulide-producing strains of B. cereus were cloned and sequenced following polymerase chain reaction (PCR) amplification with primers that were specific for conserved regions of non-ribosomal peptide synthetase (NRPS) genes. The cloned regions of the B. cereus strains were highly homologous to conserved regions of other peptide synthetase nucleotide sequences. Primers were designed for two variable regions of the NRPS gene sequence to ensure specificity for the emetic strains. A total of 86 B. cereus strains of known emetic or non-emetic activity were screened using these primers. All of the emetic strains (n=30) displayed a 188 bp band following amplification and gel electrophoresis. We have developed an improved method of identifying emetic strains of B. cereus and provided evidence that cereulide is produced by peptide synthetases.  相似文献   

8.
Bacillus cereus is a spore-forming, Gram-positive bacterium commonly associated with outbreaks of food poisoning. It is also known as an opportunistic pathogen causing clinical infections such as bacteremia, meningitis, pneumonia, and gas gangrene-like cutaneous infections, mostly in immunocompromised patients. B. cereus secretes a plethora of toxins of which four are associated with the symptoms of food poisoning. Two of these, the non-hemolytic enterotoxin Nhe and the hemolysin BL (Hbl) toxin, are predicted to be structurally similar and are unique in that they require the combined action of three toxin proteins to induce cell lysis. Despite their dominant role in disease, the molecular mechanism of their toxic function is still poorly understood. We report here that B. cereus strain ATCC 10876 harbors not only genes encoding Nhe, but also two copies of the hbl genes. We identified Hbl as the major secreted toxin responsible for inducing rapid cell lysis both in cultured cells and in an intraperitoneal mouse toxicity model. Antibody neutralization and deletion of Hbl-encoding genes resulted in significant reductions of cytotoxic activity. Microscopy studies with Chinese Hamster Ovary cells furthermore showed that pore formation by both Hbl and Nhe occurs through a stepwise, sequential binding of toxin components to the cell surface and to each other. This begins with binding of Hbl-B or NheC to the eukaryotic membrane, and is followed by the recruitment of Hbl-L1 or NheB, respectively, followed by the corresponding third protein. Lastly, toxin component complementation studies indicate that although Hbl and Nhe can be expressed simultaneously and are predicted to be structurally similar, they are incompatible and cannot complement each other.  相似文献   

9.
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.  相似文献   

10.
Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used for identification of emetic B. cereus strains. MC67 and MC118 produced cereulide at temperatures of as low as 8 degrees C.  相似文献   

11.
Twenty-six strains of Bacillus cereus from different sources were determined to be either mesophilic or psychrotrophic by growth at 6 and 42 degrees C. The strains were also screened by two polymerase chain reaction (PCR) methods designed to discriminate between mesophilic and psychrotrophic types. Seventeen of the 26 strains were able to grow at 6 degrees C, but only four conformed to the new psychrotolerant species Bacillus weihenstephanensis. Among the 26 strains were two which caused outbreaks of food poisoning in Norway, and three others that were isolated from food suspected of causing illness. The presence of the gene components encoding production of enterotoxins Nhe, Hbl, EntT and a recently described cytotoxin K was determined by PCR. All the strains possessed genes for at least one of these toxins, and 19 of the 26 strains were cytotoxic in a Vero cell assay. We conclude that there are psychrotrophic B. cereus strains which cannot be classified as B. weihenstephanensis, and that intermediate forms between the two species exist. No correlation between cytotoxicity and the growth temperature of the strains was found.  相似文献   

12.
Bacillus cereus causes two types of gastrointestinal diseases: emesis and diarrhea. The emetic type of the disease is attributed to the heat-stable depsipeptide cereulide and symptoms resemble Staphylococcus aureus intoxication, but there is no rapid method available to detect B. cereus strains causing this type of disease. In this study, a polymerase chain reaction (PCR) fragment of unknown function was identified, which was shown to be specific for emetic toxin producing strains of B. cereus. The sequence of this amplicon was determined and a PCR assay was developed on this basis. One hundred B. cereus isolates obtained from different food poisoning outbreaks and diverse food sources from various geographical locations and 29 strains from other species belonging to the B. cereus group were tested by this assay. In addition, 49 non-B. cereus group strains, with special emphasis on food pathogens, were used to show that the assay is specific for emetic toxin producing B. cereus strains. The presented PCR assay is the first molecular tool for the rapid detection of emetic toxin producing B. cereus strains.  相似文献   

13.
Cereulide is the causative toxin of the emetic type of food-borne illness caused by Bacillus cereus. This toxin was previously shown to be associated with fulminant liver failure in a human case. Mice were injected i.p. with synthetic cereulide and the development of histopathological changes was examined. Hepatocytes showed mitochondrial swelling with loss of cristae, and dose-dependent increase of small fatty droplets. These microsteatotic hepatocytes were distributed mainly in the pericentral area. At higher cereulide doses, massive degeneration of hepatocytes occurred. The serum values of hepatic enzymes were highest on days 2-3 after the inoculation of cereulide, and rapidly decreased thereafter. General recovery from the pathological changes and regeneration of hepatocytes was observed after 4 weeks.  相似文献   

14.
An emetic toxin cereulide, produced by Bacillus cereus, causes emetic food poisonings, but a method for quantitative measurement of cereulide has not been well established. A current detection method is a bioassay method using the HEp-2 cell vacuolation test, but it was unable to measure an accurate concentration. We established a quantitative assay for cereulide based on its mitochondrial respiratory uncoupling activity. The oxygen consumption in a reaction medium containing rat liver mitochondria was rapid in the presence of cereulide. Thus uncoupling effect of cereulide on mitochondrial respiration was similar to those of uncouplers 2,4-dinitrophenol (DNP), carbonylcyanide m-chlorophenylhydrazone (CCCP), and valinomycin. This method gave constant results over a wide range of cereulide concentrations, ranging from 0.05 to 100 microg/ml. The minimum cereulide concentration to detect uncoupled oxygen consumption was 50 ng/ml and increased dose-dependently to the maximum level. Semi-log relationship between the oxygen consumption rate and the cereulide concentration enables this method to quantify cereulide. The results of this method were highly reproducible as compared with the HEp-2 cell vacuolation test and were in good agreement with those of the HEp-2 cell vacuolation test. The enterotoxin of B. cereus or Staphylococcus aureus did not show any effect on the oxygen consumption, indicating this method is specific for the identification of cereulide as a causative agent of emetic food poisonings.  相似文献   

15.
Cereulide-producing Bacillus cereus can cause an emetic type of food-borne disease that mimics the symptoms provoked by Staphylococcus aureus. Based on the recently discovered genetic background for cereulide formation, a novel 5' nuclease (TaqMan) real-time PCR assay was developed to provide a rapid and sensitive method for the specific detection of emetic B. cereus in food. The TaqMan assay includes an internal amplification control and primers and a probe designed to target a highly specific part of the cereulide synthetase genes. Additionally, a specific SYBR green I assay was developed and extended to create a duplex SYBR green I assay for the one-step identification and discrimination of the two emesis-causing food pathogens B. cereus and S. aureus. The inclusivity and exclusivity of the assay were assessed using a panel of 100 strains, including 23 emetic B. cereus and 14 S. aureus strains. Different methods for DNA isolation from artificially contaminated foods were evaluated, and established real-time assays were used to analyze two recent emetic food poisonings in southern Germany. One of the food-borne outbreaks included 17 children visiting a day care center who vomited after consuming a reheated rice dish, collapsed, and were hospitalized; the other case concerned a single food-poisoning incident occurring after consumption of cauliflower. Within 2 h, the etiological agent of these food poisonings was identified as emetic B. cereus by using the real-time PCR assay.  相似文献   

16.

Background  

Three enterotoxins are implicated in diarrhoeal food poisoning due to Bacillus cereus: Haemolysin BL (Hbl), Non-haemolytic enterotoxin (Nhe), and Cytotoxin K (CytK). Toxin gene profiling and assays for detection of toxin-producing stains have been used in attempts to evaluate the enterotoxic potential of B. cereus group strains. B. cereus strain NVH 391/98, isolated from a case of fatal enteritis, was genetically remote from other B. cereus group strains. This strain lacked the genes encoding Hbl and Nhe, but contains CytK-1. The high virulence of this strain is thought to be due to the greater cytotoxic activity of CytK-1 compared to CytK-2, and to a high level of cytK expression. To date, only three strains containing cytK-1 have been identified; B. cereus strains NVH 391/98, NVH 883/00, and INRA AF2.  相似文献   

17.
Aims:  A PCR technique was developed as a reliable and rapid identification method for the Bacillus cereus group species, based on a unique conserved sequence of the motB gene (encoding flagellar motor protein) from B. cereus , Bacillus thuringiensis and Bacillus anthracis .
Methods and Results:  Primer locations were identified against eight strains of the B. cereus group spp. from nucleotide sequences available in the National Centre for Biotechnology Information database. The PCR assay was applied for the identification of 117 strains of the B. cereus group spp. and 19 strains from other microbial species, with special emphasis on foodborne pathogens.
Conclusion:  The designed cross-species primers are group specific and did not react with DNA from other Bacillus and non- Bacillus species either motile or not. The primers system enabled us to detect 103 CFU of B. cereus cells per millilitre of sample.
Significance and Impact of the Study:  Bacillus cereus group spp. belongs to one of the most prevalent foodborne pathogens. Bacterial growth results in production of different toxins; therefore, consumption of food containing >106 bacteria per gram may result in emetic and diarrhoeal syndromes. A rapid and sensitive bacterial detection method is significant for food safety.  相似文献   

18.
The plasmids of the members of the Bacillus cereus sensu lato group of organisms are essential in defining the phenotypic traits associated with pathogenesis and ecology. For example, Bacillus anthracis contains two plasmids, pXO1 and pXO2, encoding toxin production and encapsulation, respectively, that define this species pathogenic potential, whereas the presence of a Bt toxin-encoding plasmid defines Bacillus thuringiensis isolates. In this study the plasmids from B. cereus isolates that produce emetic toxin or are linked to periodontal disease were sequenced and analyzed. Two periodontal isolates examined contained almost identical approximately 272-kb plasmids, named pPER272. The emetic toxin-producing isolate contained one approximately 270-kb plasmid, named pCER270, encoding the cereulide biosynthesis gene cluster. Comparative sequence analyses of these B. cereus plasmids revealed a high degree of sequence similarity to the B. anthracis pXO1 plasmid, especially in a putative replication region. These plasmids form a newly defined group of pXO1-like plasmids. However, these novel plasmids do not contain the pXO1 pathogenicity island, which in each instance is replaced by plasmid specific DNA. Plasmids pCER270 and pPER272 share regions that are not found in any other pXO1-like plasmids. Evolutionary studies suggest that these plasmids are more closely related to each other than to other identified B. cereus plasmids. Screening of a population of B. cereus group isolates revealed that pXO1-like plasmids are more often found in association with clinical isolates. This study demonstrates that the pXO1-like plasmids may define pathogenic B. cereus isolates in the same way that pXO1 and pXO2 define the B. anthracis species.  相似文献   

19.
Cereulide production has until now been restricted to the species Bacillus cereus. Here we report on two psychrotolerant Bacillus weihenstephanensis strains, MC67 and MC118, that produce cereulide. The strains are atypical with regard to pheno- and genotypic characteristics normally used for identification of emetic B. cereus strains. MC67 and MC118 produced cereulide at temperatures of as low as 8°C.  相似文献   

20.
Cereulide, a depsipeptide structurally related to valinomycin, is responsible for the emetic type of gastrointestinal disease caused by Bacillus cereus. Due to its chemical structure, (D-O-Leu-D-Ala-L-O-Val-L-Val)(3), cereulide might be synthesized nonribosomally. Therefore, degenerate PCR primers targeted to conserved sequence motifs of known nonribosomal peptide synthetase (NRPS) genes were used to amplify gene fragments from a cereulide-producing B. cereus strain. Sequence analysis of one of the amplicons revealed a DNA fragment whose putative gene product showed significant homology to valine activation NRPS modules. The sequences of the flanking regions of this DNA fragment revealed a complete module that is predicted to activate valine, as well as a putative carboxyl-terminal thioesterase domain of the NRPS gene. Disruption of the peptide synthetase gene by insertion of a kanamycin cassette through homologous recombination produced cereulide-deficient mutants. The valine-activating module was highly conserved when sequences from nine emetic B. cereus strains isolated from diverse geographical locations were compared. Primers were designed based on the NRPS sequence, and the resulting PCR assay, targeting the ces gene, was tested by using a panel of 143 B. cereus group strains and 40 strains of other bacterial species showing PCR bands specific for only the cereulide-producing B. cereus strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号