首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cloning and disruption of Rga1, the gene encoding the G protein α subunit in the rice sheath blight fungus Rhizoctonia solani, was investigated. The deduced primary structure of the Rga1-encoded protein showed high identity to those of Gα subunits from other filamentous fungi. Disruption of Rga1 led to decreased vegetative growth and pathogenicity. The Rga1 disruptant showed altered colony morphology. In addition, the sclerotia formation ability of the disruptant was completely lost. These results suggest that the Gα subunit encoded by Rga1 is involved in a signal transduction pathway in R. solani that controls growth, development and pathogenicity.  相似文献   

3.
The Ustilago maydis mrb1 gene specifies a mitochondrial matrix protein with significant similarity to mitochondrial p32 family proteins known from human and many other eukaryotic species. Compatible mrb1 mutant strains were able to mate and form dikaryotic hyphae; however, proliferation within infected tissue and the ability to induce tumor development of infected maize (Zea mays) plants were drastically impaired. Surprisingly, manifestation of the mrb1 mutant phenotype selectively depended on the a2 mating type locus. The a2 locus contains, in addition to pheromone signaling components, the genes lga2 and rga2 of unknown function. Deletion of lga2 in an a2Deltamrb1 strain fully restored pathogenicity, whereas pathogenicity was partially regained in an a2Deltamrb1Deltarga2 strain, implicating a concerted action between Lga2 and Rga2 in compromising pathogenicity in Deltamrb1 strains. Lga2 and Rga2 localized to mitochondria and Mrb1 interacted with Rga2 in the yeast two-hybrid system. Conditional expression of lga2 in haploid cells reduced vegetative growth, conferred mitochondrial fragmentation and mitochondrial DNA degradation, and interfered with respiratory activity. The consequences of lga2 overexpression depended on the expression strength and were greatly exacerbated in Deltamrb1 mutants. We propose that Lga2 interferes with mitochondrial fusion and that Mrb1 controls this activity, emphasizing a critical link between mitochondrial morphology and pathogenicity.  相似文献   

4.
G Loubradou  J Bégueret  B Turcq 《Genetics》1999,152(2):519-528
Cell death via vegetative incompatibility is widespread in fungi but molecular mechanism and biological function of the process are poorly understood. One way to investigate this phenomenon was to study genes named mod that modified incompatibility reaction. In this study, we cloned the mod-D gene that encodes a Galpha protein. The mod-D mutant strains present developmental defects. Previously, we showed that the mod-E gene encodes an HSP90. The mod-E1 mutation suppresses both vegetative incompatibility and developmental defects due to the mod-D mutation. Moreover, we isolated the PaAC gene, which encodes an adenylate cyclase, as a partial suppressor of the mod-D1 mutation. Our previous results showed that the molecular mechanisms involved in vegetative incompatibility and developmental pathways are connected, suggesting that vegetative incompatibility may result from disorders in some developmental steps. Our new result corroborates the involvement of mod genes in signal transduction pathways. As expected, we showed that an increase in the cAMP level is able to suppress the defects in vegetative growth due to the mod-D1 mutation. However, cAMP increase has no influence on the suppressor effect of the mod-D1 mutation on vegetative incompatibility, suggesting that this suppressor effect is independent of the cAMP pathway.  相似文献   

5.
G. Loubradou  J. Begueret    B. Turcq 《Genetics》1997,147(2):581-588
Vegetative incompatibility is widespread in fungi but its molecular mechanism and biological function are still poorly understood. A way to study vegetative incompatibility is to investigate the function of genes whose mutations suppress this phenomenon. In Podospora anserina, these genes are known as mod genes. In addition to suppressing vegetative incompatibility, mod mutations cause some developmental defects. This suggests that the molecular mechanisms of vegetative incompatibility and development pathways are interconnected. The mod-E1 mutation was isolated as a suppressor of the developmental defects of the mod-D2 strain. We show here that mod-E1 also partially suppresses vegetative incompatibility, strengthening the link between development and vegetative incompatibility. mod-E1 is the first suppressor of vegetative incompatibility characterized at the molecular level. It encodes a member of the Hsp90 family, suggesting that development and vegetative incompatibility use common steps of a signal transduction pathway. The involvement of mod-E in the sexual cycle has also been further investigated.  相似文献   

6.
In budding yeast, Rga1 negatively regulates the Rho GTPase Cdc42 by acting as a GTPase-activating protein (GAP) for Cdc42. To gain insight into the function and regulation of Rga1, we overexpressed Rga1 and an N-terminally truncated Rga1-C538 (a.a. 538-1007) segment. Overexpression of Rga1-C538 but not full-length Rga1 severely impaired growth and cell morphology in wild-type cells. We show that Rga1 is phosphorylated during the cell cycle. The lack of phenotype for full-length Rga1 upon overexpression may result from a negative regulation by G1-specific Pho85, a cyclin-dependent kinase (CDK). From a high-copy suppressor screen, we isolated RHO3, SEC9, SEC1, SSO1, SSO2, and SRO7, genes involved in exocytosis, as suppressors of the growth defect caused by Rga1-C538 overexpression. Moreover, we detected that Rga1 interacts with Rho3 in two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Rga1 preferentially interacts with the GTP-bound form of Rho3 and the interaction requires the GAP domain and additional sequence upstream of the GAP domain. Our data suggest that the interaction of Rga1 with Rho3 may regulate Rho3’s function in polarized bud growth.  相似文献   

7.
Vegetative incompatibility in fungi limits the formation of viable heterokaryons. It results from the coexpression of incompatible genes in the heterokaryotic cells and leads to a cell death reaction. In Podospora anserina, a modification of gene expression takes place during this reaction, including a strong decrease of total RNA synthesis and the appearance of a new set of proteins. Using in vitro translation of mRNA and separation of protein products by two-dimensional gel electrophoresis, we have shown that the mRNA content of cells is qualitatively modified during the progress of the incompatibility reaction. Thus, gene expression during vegetative incompatibility is regulated, at least in part, by variation of the mRNA content of specific genes. A subtractive cDNA library enriched in sequences preferentially expressed during incompatibility was constructed. This library was used to identify genomic loci corresponding to genes whose mRNA is induced during incompatibility. Three such genes were characterized and named idi genes for genes induced during incompatibility. Their expression profiles suggest that they may be involved in different steps of the incompatibility reaction. The putative IDI proteins encoded by these genes are small proteins with signal peptides. IDI-2 protein is a cysteine-rich protein. IDI-2 and IDI-3 proteins display some similarity in a tryptophan-rich region.  相似文献   

8.
In the fungus Podospora anserina, the interaction between the nonallelic incompatible R and V genes has two consequences: a lytic reaction due to the synthesis of specific proteolytic enzymes, and a quenching in protein and ribonucleic acid synthesis. The incompatibility reaction when vegetative or sexual R and V cells fuse is asymmetric: it is induced only in the R protoplasm. The cessation in ribonucleic acid and protein synthesis was investigated in heterokaryotic strains carrying the antagonistic R and V genes and their "neutral" r and v alleles. Asymmetry between R and V genes lies in the fact that the strains homozygous for the R genes are the only strains that cannot grow. From these results it is postulated that the V-gene product is a diffusible cytoplasmic factor and that the R-gene product, which is nonautonomous, is a ribosomal component.  相似文献   

9.
The nucleotide sequence of the cytochrome c (CytC) gene of the white root rot fungus Rosellinia necatrix was analyzed. The structure of this gene, which had three introns in the coding region, was similar to that of Aspergillus nidulans. The second intron of the R. necatrix CytC gene was not present in Neurospora crassa or Fusarium oxysporum. However, the amino acid sequence of R. necatrix was most similar to that of Neurospora crassa. Thus, it seemed that the second intron of the R. necatrix CytC gene was inserted into its present position after R. necatrix and its closest relatives diverged evolutionarily.  相似文献   

10.
Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.  相似文献   

11.
When mycelia of Rosellinia necatrix encounter mycelia of a different genetic strain, distinct barrage lines are formed between the two. These barrages have variable features such as pigmented pseudosclerotia structures, a clear zone, fuzzy hair-like mycelia, or tuft-like mycelia, suggesting that mycelial incompatibility triggers a number of cellular reactions. In this study, to evaluate cellular reactions we performed genetic analysis of mycelial incompatibility of R. nectarix, using 20 single ascospore isolates from single perithecia. Mycelial interaction zones were removed by spatula and cellular reactions studied on oatmeal agar media. The interaction zones were categorized into types such as sharp or wide lines, with or without melanin, and combinations of these. Although various reaction types were observed, we were able to identify a single genetic factor that appears to be responsible for the barrage line formation within oatmeal agar medium. DNA polymorphism analysis identified parental isolates and revealed that R. necatrix has a heterothallic life cycle.  相似文献   

12.
Control of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4 Delta cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip. Consistent with a negative role in cell growth control, Rga4p protein localizes to the cell sides in a "corset" pattern, and to the nongrowing cell tips. Additionally, rga4 Delta cells show an altered growth pattern similar to that observed in mutants of the formin homology protein For3p. Consistent with these observations, Rga4p is required for normal localization of For3p and for normal distribution of the actin cytoskeleton. We show that different domains of the Rga4p protein mediate diverse morphological functions. The C-terminal GAP domain mediates For3p localization to the cell tips and maintains cell diameter. Conversely, overexpression of the N-terminal LIM homology domain of Rga4p promotes actin cable formation in a For3p-dependent manner. Our studies indicate that Rga4p functionally interacts with For3p and has a novel function in the control of cell diameter and cell growth.  相似文献   

13.
A new IncQ plasmid R89S: Properties and genetic organization   总被引:4,自引:0,他引:4  
The new small (8.18 kb) streptomycin-resistant multicopy plasmid R89S of the Q group incompatibility is described. In contrast to other IncQ plasmids, replication of R89S is dependent on DNA polymerase 1 and proceeds in the absence of de novo protein synthesis. According to our data up to now, the host spectrum of the plasmid R89S is limited to Enterobacteriaceae. A genetic map of the plasmid R89S has been prepared through the construction of deletion and insertion derivatives. Phenotypic analysis of these derivatives has identified the location of genes encoding resistance to streptomycin, and the region essential for mobilization of R89S. The origin of vegetative replication has been located within a 0.7-kb fragment. Another region highly homologous to oriV of the plasmid RSF1010, but not functioning as an origin of replication, was localized. Two regions involved in the expression of incompatibility have also been identified. The data from the restriction analyses, DNA-DNA hybridization, and genetic experiments enable us to assume that the plasmid R89S is a naturally occurring recombinant between part of an IncQ plasmid and another narrow host range replicon of unknown incompatibility group.  相似文献   

14.
BACKGROUND: In the fission yeast Schizosaccharomyces pombe, cell growth takes place exclusively at both ends of the cylindrical cell. During this highly polarized growth, microtubules are responsible for the placement of the cell-end marker proteins, the Tea1-Tea4/Wsh3 complex, which recruits the Pom1 DYRK-family protein kinase. Pom1 is required for proper positioning of growth sites, and the Deltapom1 mutation brings about monopolar cell growth. RESULTS: Pom1 kinase physically interacts with Rga4, which has a GAP (GTPase-activating protein) domain for Rho-family GTPase. Genetic and biochemical evidence indicates that Rga4 functions as GAP for the Cdc42 GTPase, an evolutionarily conserved regulator of F-actin. CRIB (Cdc42/Rac interactive binding)-GFP microscopy has revealed that GTP-bound, active Cdc42 is concentrated to growing cell ends accompanied by developed F-actin structures, where the Rga4 GAP is excluded. The monopolar Deltapom1 mutant fails to eliminate Rga4 from the nongrowing cell end, resulting in monopolar distribution of GTP-Cdc42 to the growing cell end. However, mutational inactivation of Rga4 allows Cdc42 to be active at both ends of Deltapom1 cells, suggesting that mislocalization of Rga4 in the Deltapom1 mutant contributes to its monopolar phenotype. CONCLUSIONS: Pom1 kinase recruited to cell ends by the Tea1-Tea4/Wsh3 complex is essential for proper localization of a GAP for Cdc42, Rga4, which ensures bipolar localization of GTP-bound, active Cdc42. Because of the established role of Cdc42 in F-actin formation, these observations provide a new insight into how the microtubule system achieves localized formation of F-actin to generate cell polarity.  相似文献   

15.
Schizosaccharomyces pombe Rho2 GTPase regulates alpha-D-glucan synthesis and acts upstream of Pck2 to activate the MAP kinase pathway for cell integrity. However, little is known about its regulation. Here we describe Rga2 as a Rho2 GTPase-activating protein (GAP) that regulates cell morphology. rga2+ gene is not essential for growth but its deletion causes longer and thinner cells whereas rga2+ overexpression causes shorter and broader cells. rga2+ overexpression also causes abnormal accumulation of Calcofluor-stained material and cell lysis, suggesting that it also participates in cell wall integrity. Rga2 localizes to growth tips and septum region. The N-terminal region of the protein is required for its correct localization whereas the PH domain is necessary exclusively for Rga2 localization to the division area. Also, Rga2 localization depends on polarity markers and on actin polymerization. Rga2 interacts with Rho2 and possesses in vitro and in vivo GAP activity for this GTPase. Accordingly, rga2Delta cells contain more alpha-D-glucan and therefore partially suppress the thermosensitivity of mok1-664 cells, which have a defective alpha-D-glucan synthase. Additionally, genetic interactions and biochemical analysis suggest that Rga2 regulates Rho2-Pck2 interaction and might participate in the regulation of the MAPK cell integrity pathway.  相似文献   

16.
17.
Paoletti M  Clavé C 《Eukaryotic cell》2007,6(11):2001-2008
Vegetative incompatibility is a programmed cell death reaction that occurs when fungal cells of unlike genotypes fuse. Genes defining vegetative incompatibility (het genes) are highly polymorphic, and most if not all incompatibility systems include a protein partner bearing the fungus-specific domain termed the HET domain. The nonallelic het-C/het-E incompatibility system is the best-characterized incompatibility system in Podospora anserina. Cell death is triggered by interaction of specific alleles of het-C, encoding a glycolipid transfer protein, and het-E, encoding a HET domain and a WD repeat domain involved in recognition. We show here that overexpression of the isolated HET domain from het-E results in cell death. This cell death is characterized by induction of autophagy, increased vacuolization, septation, and production of lipid droplets, which are hallmarks of cell death by incompatibility. In addition, the HET domain lethality is suppressed by the same mutations as vegetative incompatibility, but not by the inactivation of het-C. These results establish the HET domain as the mediator of cell death by incompatibility and lead to a modular conception of incompatibility systems whereby recognition is ensured by the variable regions of incompatibility proteins and cell death is triggered by the HET domain.  相似文献   

18.
When the mycelia of Rosellinia necatrix encounter mycelia with a different genetic background, distinct barrage lines form. In this study, we observed hyphal interactions between compatible and incompatible R. necatrix pairs by means of light and electron microscopy. Although we observed perfect hyphal anastomosis in compatible pairs of isolates, the hyphae never anastomosed in incompatible pairs (i.e., the hyphae remained parallel or crossed over without merging). These behaviours appeared to result from the detection of or failure to detect one or more diffusible factors. The attraction to other hyphae in pairs of incompatible isolates was increased by supplementation of the growing medium with activated charcoal, although no anastomosis was observed and ultrastructural observation confirmed a lack of hyphal anastomosis. Programmed cell death (PCD) started with one of the two approaching hyphae. Heterochromatin condensation and genomic DNA fragmentation were not observed. Moreover, cell damage began with the tonoplast and continued with the plasma and nuclear membranes, suggesting that the PCD observed in heterogenic incompatibility of R. necatrix was a vacuole-mediated process.  相似文献   

19.
The PAK family kinase, Shk1, is an essential regulator of polarized growth in the fission yeast, Schizosaccharomyces pombe. Here we describe the characterization of a novel member of the RhoGAP family, Rga8, identified from a two-hybrid screen for proteins that interact with the Shk1 kinase domain. Although deletion of the rga8 gene in wild type S. pombe cells results in no obvious phenotypic defects under normal growth conditions, it partially suppresses the cold-sensitive growth and morphological defects of S. pombe cells carrying a hypomorphic allele of the shk1 gene. By contrast, overexpression of rga8 is lethal to shk1-defective cells and causes morphological and cytokinesis defects in wild type S. pombe cells. Consistent with a role for Rga8 as a downstream target of Shk1, we show that the Rga8 protein is directly phosphorylated by Shk1 in vitro and phosphorylated in a Shk1-dependent fashion in S. pombe cells. Fluorescence photomicroscopy of the GFP-Rga8 fusion protein indicates that Rga8 is localized to the cell ends during interphase and to the septum-forming region during cytokinesis. In S. pombe cells carrying the orb2-34 allele of shk1, Rga8 exhibits a monopolar pattern of localization, providing evidence that Shk1 contributes to the regulation of Rga8 localization. Although molecular analyses suggest that Rga8 functions as a GAP for the S. pombe Rho1 GTPase, genetic experiments suggest that Rga8 and Rho1 have a positive functional interaction and that gain of Rho1 function, like gain of Rga8 function, is lethal to Shk1-defective cells. Our results suggest that Rga8 is a Shk1 substrate that negatively regulates Shk1-dependent growth control pathway(s) in S. pombe, potentially through interaction with the Rho1 GTPase.  相似文献   

20.
The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that grows by linear extension at the cell tips, with a nearly constant width throughout the cell cycle. This simple geometry makes it an ideal system for studying the control of cellular dimensions. In this study, we carried out a near-genome-wide screen for mutants wider than wild-type cells. We found 11 deletion mutants that were wider; seven of the deleted genes are implicated in the control of the small GTPase Cdc42, including the Cdc42 guanine nucleotide exchange factor (GEF) Scd1 and the Cdc42 GTPase-activating protein (GAP) Rga4. Deletions of rga4 and scd1 had additive effects on cell width, and the proteins localized independently of one another, with Rga4 located at the cell sides and Scd1 at the cell tips. Activated Cdc42 localization is altered in rga4Δ, scd1Δ, and scd2Δ mutants. Delocalization and ectopic retargeting experiments showed that the localizations of Rga4 and Scd1 are crucial for their roles in determining cell width. We propose that the GAP Rga4 and the GEF Scd1 establish a gradient of activated Cdc42 within the cellular tip plasma membrane, and it is this gradient that determines cell growth-zone size and normal cell width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号