首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regression analysis of multivariate panel count data   总被引:1,自引:0,他引:1  
We consider panel count data which are frequently obtained in prospective studies involving recurrent events that are only detected and recorded at periodic assessment times. The data take the form of counts of the cumulative number of events detected at each inspection time, along with explanatory covariates. Examples arise in diverse areas such as epidemiological studies, medical follow-up studies, reliability studies, and tumorigenicity experiments. This article is concerned with regression analysis of multivariate panel count data which arise if more than one type of recurrent event is of interest and individuals are only observed intermittently. We present a class of marginal mean models which leave the dependence structures for related types of recurrent events completely unspecified. Estimating equations are developed for regression parameters, and the resulting estimates are shown to be consistent and asymptotically normal. Simulation studies show that the proposed estimation procedures work well for practical situations. The methodology is applied to a motivating study of patients with psoriatic arthritis in which the events of interest are the onset of joint damage according to 2 different criteria.  相似文献   

2.
We present an approach for analyzing internal dependencies in counting processes. This covers the case with repeated events on each of a number of individuals, and more generally, the situation where several processes are observed for each individual. We define dynamic covariates, i.e., covariates depending on the past of the processes. The statistical analysis is performed mainly by the nonparametric additive approach. This yields a method for analyzing multivariate survival data, which is an alternative to the frailty approach. We present cumulative regression plots, statistical tests, residual plots, and a hat matrix plot for studying outliers. A program in R and S-PLUS for analyzing survival data with the additive regression model is available on the web site http://www.med.uio.no/imb/stat/addreg. The program has been developed to fit the counting process framework.  相似文献   

3.
The correct display of data is often a key point for interpreting the results of experimental procedures. Multivariate data sets suffer from the problem of representation, since a dimensionality above 3 is beyond the capability of plotting programs. Moreover, non numerical variables such as protein annotations are usually fundamental for a full comprehension of biological data. Here we present a novel interactive XY plotter designed to take the full control of large datasets containing mixed-type variables, provided with an intuitive data management, a powerful labelling system and other features aimed at facilitating data interpretation and sub-setting. AVAILABILITY: XYLab program, test dataset and manual is available at www4.unifi.it/scibio/bioinfo/ XYLab.html.  相似文献   

4.
DiscoverySpace: an interactive data analysis application   总被引:1,自引:0,他引:1       下载免费PDF全文
DiscoverySpace is a graphical application for bioinformatics data analysis. Users can seamlessly traverse references between biological databases and draw together annotations in an intuitive tabular interface. Datasets can be compared using a suite of novel tools to aid in the identification of significant patterns. DiscoverySpace is of broad utility and its particular strength is in the analysis of serial analysis of gene expression (SAGE) data. The application is freely available online.  相似文献   

5.
6.
A Bayesian survival analysis is presented to examine the effect of fluoride-intake on the time to caries development of the permanent first molars in children between 7 and 12 years of age using a longitudinal study conducted in Flanders. Three problems needed to be addressed. Firstly, since the emergence time of a tooth and the time it experiences caries were recorded yearly, the time to caries is doubly interval censored. Secondly, due to the setup of the study, many emergence times were left-censored. Thirdly, events on teeth of the same child are dependent. Our Bayesian analysis is a modified version of the intensity model of Harkanen et al. (2000, Scandinavian Journal of Statistics 27, 577-588). To tackle the problem of the large number of left-censored observations a similar Finnish data set was introduced. Our analysis shows no convincing effect of fluoride-intake on caries development.  相似文献   

7.
Data occurring in the form of frequencies are common in genetics—for example, in serology. Examples are provided by the AB0 group, the Rhesus group, and also DNA data. The statistical analysis of tables of frequencies is carried out using the available methods of multivariate analysis with usually three principal aims. One of these is to seek meaningful relationships between the components of a data set, the second is to examine relationships between populations from which the data have been obtained, the third is to bring about a reduction in dimensionality. This latter aim is usually realized by means of bivariate scatter diagrams using scores computed from a multivariate analysis. The multivariate statistical analysis of tables of frequencies cannot safely be carried out by standard multivariate procedures because they represent compositions and are therefore embedded in simplex space, a subspace of full space. Appropriate procedures for simplex space are compared and contrasted with simple standard methods of multivariate analysis (“raw” principal component analysis). The study shows that the differences between a log-ratio model and a simple logarithmic transformation of proportions may not be very great, particularly as regards graphical ordinations, but important discrepancies do occur. The divergencies between logarithmically based analyses and raw data are, however, great. Published data on Rhesus alleles observed for Italian populations are used to exemplify the subject.  相似文献   

8.
In this paper, we provide an overview of recently developed methods for the analysis of multivariate data that do not necessarily emanate from a normal universe. Multivariate data occur naturally in the life sciences and in other research fields. When drawing inference, it is generally recommended to take the multivariate nature of the data into account, and not merely analyze each variable separately. Furthermore, it is often of major interest to select an appropriate set of important variables. We present contributions in three different, but closely related, research areas: first, a general approach to the comparison of mean vectors, which allows for profile analysis and tests of dimensionality; second, non‐parametric and parametric methods for the comparison of independent samples of multivariate observations; and third, methods for the situation where the experimental units are observed repeatedly, for example, over time, and the main focus is on analyzing different time profiles when the number p of repeated observations per subject is larger than the number n of subjects.  相似文献   

9.
Multivariate analysis such as principal-components analysis (PCA) and partial-least-squares-discriminant analysis (PLS-DA) have been applied to peptidomics data from clinical urine samples subjected to LC/MS analysis. We show that it is possible to use these methods to get information from a complex set of clinical data. The aim of the work is to use this information as a first step in the further search for clinical biomarker data. It is possible to identify peptide-biomarker fingerprints related to disease diagnosis and progression. Further, we review clinical proteomics and pharmacogenomics data analyzed with the same multivariate approach.  相似文献   

10.
The analysis of data generated on a flow cytometer (FCM) is often performed on a computer obtained especially for dedicated use with the flow cytometer. This computer component can be expensive and also presents the FCM user with the added burden of mastering specialized programming language or of accepting the secret analytical processes of protected proprietary program routines. We believe that the evolution of more accurate and efficient FCM analyses that have the power to consider complex signal distributions can be assisted by the availability of analysis programs written in languages common to many users. DNA analysis routines written for a relatively inexpensive microcomputer (IBM PC/XT) in Basic and Pascal are described here. The routines can automatically process multiple FCM data files and can provide high-resolution graphic hardcopy. A foreground/background utilization is also described that allows the computer to be available for other uses in the laboratory.  相似文献   

11.
On the regression analysis of multivariate failure time data   总被引:19,自引:0,他引:19  
  相似文献   

12.
Reflections on univariate and multivariate analysis of metabolomics data   总被引:1,自引:0,他引:1  
Metabolomics experiments usually result in a large quantity of data. Univariate and multivariate analysis techniques are routinely used to extract relevant information from the data with the aim of providing biological knowledge on the problem studied. Despite the fact that statistical tools like the t test, analysis of variance, principal component analysis, and partial least squares discriminant analysis constitute the backbone of the statistical part of the vast majority of metabolomics papers, it seems that many basic but rather fundamental questions are still often asked, like: Why do the results of univariate and multivariate analyses differ? Why apply univariate methods if you have already applied a multivariate method? Why if I do not see something univariately I see something multivariately? In the present paper we address some aspects of univariate and multivariate analysis, with the scope of clarifying in simple terms the main differences between the two approaches. Applications of the t test, analysis of variance, principal component analysis and partial least squares discriminant analysis will be shown on both real and simulated metabolomics data examples to provide an overview on fundamental aspects of univariate and multivariate methods.  相似文献   

13.
High-content screening (HCS) is increasingly used in biomedical research generating multivariate, single-cell data sets. Before scoring a treatment, the complex data sets are processed (e.g., normalized, reduced to a lower dimensionality) to help extract valuable information. However, there has been no published comparison of the performance of these methods. This study comparatively evaluates unbiased approaches to reduce dimensionality as well as to summarize cell populations. To evaluate these different data-processing strategies, the prediction accuracies and the Z' factors of control compounds of a HCS cell cycle data set were monitored. As expected, dimension reduction led to a lower degree of discrimination between control samples. A high degree of classification accuracy was achieved when the cell population was summarized on well level using percentile values. As a conclusion, the generic data analysis pipeline described here enables a systematic review of alternative strategies to analyze multiparametric results from biological systems.  相似文献   

14.
15.
16.
An inequality with application to multivariate analysis   总被引:2,自引:0,他引:2  
THEOBALD  C. M. 《Biometrika》1975,62(2):461-466
  相似文献   

17.
In the past decade conditional autoregressive modelling specifications have found considerable application for the analysis of spatial data. Nearly all of this work is done in the univariate case and employs an improper specification. Our contribution here is to move to multivariate conditional autoregressive models and to provide rich, flexible classes which yield proper distributions. Our approach is to introduce spatial autoregression parameters. We first clarify what classes can be developed from the family of Mardia (1988) and contrast with recent work of Kim et al. (2000). We then present a novel parametric linear transformation which provides an extension with attractive interpretation. We propose to employ these models as specifications for second-stage spatial effects in hierarchical models. Two applications are discussed; one for the two-dimensional case modelling spatial patterns of child growth, the other for a four-dimensional situation modelling spatial variation in HLA-B allele frequencies. In each case, full Bayesian inference is carried out using Markov chain Monte Carlo simulation.  相似文献   

18.
Biotech unit operations are often characterized by a large number of inputs (operational parameters) and outputs (performance parameters) along with complex correlations among them. A typical biotech process starts with the vial of the cell bank, ends with the final product, and has anywhere from 15 to 30 such unit operations in series. Besides the above‐mentioned operational parameters, raw material attributes can also impact process performance and product quality as well as interact among each other. Multivariate data analysis (MVDA) offers an effective approach to gather process understanding from such complex datasets. Review of literature suggests that the use of MVDA is rapidly increasing, fuelled by the gradual acceptance of quality by design (QbD) and process analytical technology (PAT) among the regulators and the biotech industry. Implementation of QbD and PAT requires enhanced process and product understanding. In this article, we first discuss the most critical issues that a practitioner needs to be aware of while performing MVDA of bioprocessing data. Next, we present a step by step procedure for performing such analysis. Industrial case studies are used to elucidate the various underlying concepts. With the increasing usage of MVDA, we hope that this article would be a useful resource for present and future practitioners of MVDA. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:967–973, 2014  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号