首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum chemical methods now permit the prediction of many spectroscopic observables in proteins and related model systems, in addition to electrostatic properties, which are found to be in excellent accord with those determined from experiment. I discuss the developments over the past decade in these areas, including predictions of nuclear magnetic resonance chemical shifts, chemical shielding tensors, scalar couplings and hyperfine (contact) shifts, the isomer shifts and quadrupole splittings in M?ssbauer spectroscopy, molecular energies and conformations, as well as a range of electrostatic properties, such as charge densities, the curvatures, Laplacians and Hessians of the charge density, electrostatic potentials, electric field gradients and electrostatic field effects. The availability of structure/spectroscopic correlations from quantum chemistry provides a basis for using numerous spectroscopic observables in determining aspects of protein structure, in determining electrostatic properties which are not readily accessible from experiment, as well as giving additional confidence in the use of these techniques to investigate questions about chemical bonding and chemical reactions.  相似文献   

2.
Nithya Srinivasan 《BBA》2009,1787(9):1057-682
This review focuses on phylloquinone as an indispensable link between light-induced charge separation and subsequent charge stabilization in Photosystem I (PS I). Here, the role of the polypeptide in conferring the necessary kinetic and thermodynamic properties to phylloquinone so as to specify its functional role in PS I electron transfer is discussed. Photosynthetic electron transfer and the role of quinones in Type I and Type II reaction centers are introduced at the outset with particular emphasis on the determination of redox potentials of the cofactors. Currently used methodologies, particularly time-resolved optical spectroscopy and varieties of magnetic resonance spectroscopy that have become invaluable in uncovering the details of phylloquinone function are described in depth. Recent studies on the selective alteration of the protein environment and on the incorporation of foreign quinones either by chemical or genetic means are explored to assess how these studies have improved our understanding of protein-quinone interactions. Particular attention is paid to the function of the H-bond, methyl group and phytyl tail of the phylloquinone in interacting with the protein environment.  相似文献   

3.
Structures and spectroscopic observables of the paramagnetic intermediates of the enzymatic reaction cycle of the metalloenzyme [NiFe] hydrogenase were calculated using relativistic density functional theory (DFT) within the zero-order regular approximation (ZORA). By comparing experimental and calculated magnetic resonance parameters (g- and hyperfine tensors) for the states Ni-A, Ni-B, Ni-C, Ni-L, and Ni-CO the details of the atomic composition of these paramagnetic intermediates could be elucidated that are mostly not available from X-ray structure analysis. In general, good agreement between calculated and experimental observables could be obtained. A detailed picture of the changes of the active center during the catalytic cycle was deduced from the obtained structures. Based on these results, a consistent model for the sequence of redox states including protonation steps is proposed which is important for understanding the mechanism of the [NiFe] hydrogenase.  相似文献   

4.
We present a model for the light-induced charge separation, proton and ion transport across photosynthetic membranes based on an assumption of the transmembrane surface charge asymmetry. In dark equilibrium, this asymmetry gives rise to an internal membrane electric field whose direction is perpendicular to the membrane surfaces. The role of the field in the light-induced charge separation is similar to the function of the built-in electric field across a solid-state p-n junction. Light-generated free charge carriers in the membrane flow according to its direction and upon recombination on the surface give rise to an electrochemical potential difference for electrons across the membrane. The associated coupled electron-proton transport, and ion diffusion can be viewed as a response of the system to the light-induced redox and electric potential changes.  相似文献   

5.
6.
The role of a flattened, relatively hydrophobic surface patch in the self-association of Chromatium vinosum HiPIP was assessed by substituting phenylalanine 48 with lysine. The reduction potential of the F48K variant was 26 mV higher than that of the wild-type (WT) recombinant (rc) HiPIP, consistent with the introduction of a positive charge close to the cluster. Nuclear magnetic resonance spectroscopy (NMR) revealed that the electronic structure of the oxidized cluster in these two proteins is very similar at 295 K. In contrast, the electron transfer self-exchange rate constant of F48K was at least 15-fold lower than that of the WT rcHiPIP, indicating that the introduction of a positive charge at position 48 diminishes self-association of the HiPIP in solution. Moreover, the substitution at position 48 abolished the fine structure in the g(z) region of the electron paramagnetic resonance (EPR) spectrum of oxidized C. vinosum rcHiPIP recorded in the presence of 1 M sodium chloride. These results support the hypothesis that the flattened, relatively hydrophobic patch mediates interaction between two molecules of HiPIP and that freezing-induced dimerization of the HiPIP mediated by this patch is responsible for the unusual fine structure observed in the EPR spectrum of the oxidized C. vinosum HiPIP.  相似文献   

7.
8.
Nuclear magnetic resonance (NMR) chemical shifts are experimental observables that are available during the first stage of the protein structure determination process. Recently, some methodologies for building structural models of proteins using only these experimental data have been implemented. To assess the potential of these methods for modeling metalloproteins (generally considered a challenging benchmark), we determined the structures of the yeast copper chaperone Atx1 and the CuA domain of Thermus thermophilus cytochrome c oxidase starting from the available chemical shift data. The metal centers were modeled using molecular dynamics simulations with molecular mechanics potentials. The results obtained are evaluated and discussed.  相似文献   

9.
The tyrosine-(M)210 of the reaction center of Rhodobacter sphaeroides 2.4.1 has been changed to a tryptophan using site-directed mutagenesis. The reaction center of this mutant has been characterized by low-temperature absorption and fluorescence spectroscopy, time-resolved sub-picosecond spectroscopy, and magnetic resonance spectroscopy. The charge separation process showed bi-exponential kinetics at room temperature, with a main time constant of 36 ps and an additional fast time constant of 5.1 ps. Temperature dependent fluorescence measurements predict that the lifetime of P* becomes 4–5 times slower at cryogenic temperatures. From EPR and absorbance-detected magnetic resonance (ADMR, LD-ADMR) we conclude that the dimeric structure of P is not significantly changed upon mutation. In contrast, the interaction of the accessory bacteriochlorophyll BA with its environment appears to be altered, possibly because of a change in its position.Abbreviations ADMR - absorbance-detected magnetic resonance - LDAO - N, N dimethyl dodecyl amine-N-oxide - RC - reaction center - LD-ADMR - linear-dichroic absorbance-detected magnetic resonance - P - primary donor - B - accessory bacteriochlorophyll - - bacteriopheophytin  相似文献   

10.
Jo S  Im W 《Biophysical journal》2011,100(12):2913-2921
As the major component of membrane proteins, transmembrane helices embedded in anisotropic bilayer environments adopt preferential orientations that are characteristic or related to their functional states. Recent developments in solid-state nuclear magnetic resonance (SSNMR) spectroscopy have made it possible to measure NMR observables that can be used to determine such orientations in a native bilayer environment. A quasistatic single conformer model is frequently used to interpret the SSNMR observables, but important motional information can be missing or misinterpreted in the model. In this work, we have investigated the orientation of the single-pass transmembrane domain of viral protein ”u“ (VpuTM) from HIV-1 by determining an ensemble of structures using multiple conformer models based on the SSNMR ensemble dynamics technique. The resulting structure ensemble shows significantly larger orientational fluctuations while the ensemble-averaged orientation is compatible with the orientation based on the quasistatic model. This observation is further corroborated by comparison with the VpuTM orientation from comparative molecular dynamics simulations in explicit bilayer membranes. SSNMR ensemble dynamics not only reveals the importance of transmembrane helix dynamics in interpretation of SSNMR observables, but also provides a means to simultaneously extract both transmembrane helix orientation and dynamics information from the SSNMR measurements.  相似文献   

11.
An optical resolution of the amide derivatives of ibuprofen and the carbamate-alkylester derivatives of the trans-alcohol metabolite of loxoprofen and an analogous compound, CS-670, was studied by chiral high-performance liquid chromatography (HPLC). The chiral columns SUMIPAX OA-4000 and OA-4100 were used to investigate the enantiomeric separation behavior of these derivatives using both reversed and normal mobile phases. A better separation factor (α) of the amide and the carbamate ester derivatives was obtained in the normal mobile phase than in the reversed mobile phase HPLC. In addition, the recognition mechanisms of both amide and carbamate ester enantiomers were investigated by 1H-nuclear magnetic resonance (NMR). It is suggested that the important driving forces for the enantiomeric separation are the formation of hydrogen bonding and the charge transfer complex between these derivatives and an active site of the chiral stationary phase. © 1995 Wiley-Liss, Inc.  相似文献   

12.
This paper summarizes the results found in our laboratory investigating the ultrafast light-induced charge separation in bacteriorhodopsin. A special technique was elaborated for dried oriented samples of long term stability. An upper limit of 21 ps was found by a direct electric method for the early charge separation processes. A permanent electric field on the surface of illuminated samples was demonstrated. The potential application of such samples as ultrafast optoelectric signal transducers is discussed.  相似文献   

13.
Magnetic interactions operating between the Chromatium vinosum reaction center associated c-cytochromes and the electron carriers of the reaction center have been assayed by comparing the magnetic properties of these components alone, and in various combinations with paramagnetic forms of the reaction center electron carriers. These studies have yielded the following results. 1. The oxidized paramagnetic forms of the high potential cytochromes c-555 produce no discernable alteration of the light-induced (BChl)2.+signal. 2. Similarly, analysis of the lineshape of the light-induced (BChl)2.+signal shows that a magnetic interaction with the oxidized low potential cytochromes c-553 is likely to produce less than a 1 gauss splitting of the (BChl)2.+signal, which corresponds to a minimum separation of 25 +/- 3 A between the unpaired spins if the heme and (BChl)2 are orientated in a coplanar arrangement, suggesting a minimum separation of 15+/- 3A between the heme edge and the (BChl)2 edge. 3. a prominent magnetic interaction is observed to operate between the cytochrome c-553 and c-555, which results in a 30-35 gauss splitting of these spectra, and suggests an iron to iron separation of about 8 A.4. Magnetic interactions are not observed between the c-cytochromes and the reaction center "primary acceptor" (the iron . quinone complex) nor with the reaction center intermediate electron carrier (which involves bacteriopheophytin) suggesting separations greater than 10 A. 5. Magnetic interactions are not discerned between the two cytochrome c-553 hemes, nor between the two cytochrome c-555 hemes, implying that the distance between the cytochromes of the same pair is greater than 10 A. 6. EPR studies of oriented chromatophores have demonstrated that the cytochrome c-553 and c-555 hemes are perpendicular to each other, and suggest that the cytochrome c-553 heme plane lies parallel to the plane of the membrane, while the cytochrome c-555 heme plane lies perpendicular to the plane of the membrane surface.  相似文献   

14.
Intrinsically disordered proteins (IDPs) have recently attracted the attention of the scientific community challenging the well accepted structure–function paradigm. In the characterization of the dynamic features of proteins nuclear magnetic resonance spectroscopy (NMR) is a strategic tool of investigation. However the peculiar properties of IDPs, with the lack of a unique 3D structure and their high flexibility, have a strong impact on NMR observables (low chemical shift dispersion, efficient solvent exchange broadening) and thus on the quality of NMR spectra. Key aspects to be considered in the design of new NMR experiments optimized for the study of IDPs are discussed. A new experiment, based on direct detection of 13Cα, is proposed.  相似文献   

15.
The light induced electron transfer in photosynthesis generates a series of sequential spin polarized radical pairs, and transient electron paramagnetic resonance (TREPR) is ideally suited to study the lifetimes and physical and electronic structures of these radical pairs. In this article, the basic principles of TREPR are outlined with emphasis on the electron spin polarization (ESP) that develops during the electron transfer process. Examples of the analysis of TREPR data are given to illustrate the information that can be obtained. Recent applications of the technique to study the functionality of reaction centers, light-induced structural changes, and protein–cofactor interactions are reviewed.  相似文献   

16.
Spectroscopic methods covering many energy regions together provide complementary insight into metalloenzyme active sites. These methods probe geometric and electronic structure and define these contributions to reactivity. Two recent advances--determination of the polarizations of electronic transitions in solution using magnetic circular dichroism, electron paramagnetic resonance and quantum chemistry, and experimental estimation of covalency using metal L-edges and ligand K-edges--are particularly important.  相似文献   

17.
18.
The kinetics for photoinduced charge separation and thermal charge-recombination processes in three donor-bridge-acceptor molecules with rhenium(I) tricarbonyl diimine photosensitizers were investigated. Time resolved luminescence and transient absorption spectroscopies reveal that in addition to driving force effects, differences in bridge-mediated electronic donor-acceptor coupling among the three dyads play important roles. Notably, it is seen that charge separation depends strongly on whether initial photoexcitation involves promotion of an electron towards or away from a phenothiazine electron donor. Thermal charge recombination rates are found to differ by a factor of 2 between two isomeric dyads due to an electronic coupling effect.  相似文献   

19.
High gradient magnetic separation of yeast   总被引:3,自引:0,他引:3  
High gradient magnetic separation (HGMS) is used to separate nonmagnetic microorganisms from solution by a technique known as seeding. Fine magnetic particles are adhered to the cells' surfaces, making them magnetic and amenable to magnetic separation. Attachment of the sub-micron, acicular gamma-Fe(2)O(3) seed to the yeast surface occurs irrespective of the solution pH and surface charge and is essentially irreversible. A model is developed to predict the separation of yeast in a high gradient magnetic separator. The effective capture radius is assumed to be proportional to the derived magnetic parameter gamma for the case where the dominant competing force to magnetic attraction is the magnetic floc's inertia. Using this parameter, yeast separation in an HGMS unit is predicted. The measured separation of Saccharomyces cerevisiae at differing magnetic seed concentrations and two flow rates supports the above model.  相似文献   

20.
The partial charge of the nitrogen atom in peptide bonds.   总被引:3,自引:2,他引:1       下载免费PDF全文
A majority of the standard texts dealing with proteins portray the peptide link as a mixture of two resonance forms, in one of which the nitrogen atom has a positive charge. As a consequence, it is often believed that the nitrogen atom has a net positive charge. This is in apparent contradiction with the partial negative charge on the nitrogen that is used in force fields for molecular modeling. However, charges on resonance forms are best regarded as formal rather than actual charges and current evidence clearly favors a net negative charge for the nitrogen atom. In the course of the discussion, new ideas about the electronic structure of amides and the peptide bond are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号