首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Monovalent ion stimulated adenosine triphosphatase from oat roots   总被引:19,自引:16,他引:3       下载免费PDF全文
Fisher J  Hodges TK 《Plant physiology》1969,44(3):385-393,395
Monovalent ion stimulated ATPase activity from oat (Avena sativa) roots has been found to be associated with various membrane fractions (cell wall, mitochondrial and microsomal) of oat roots. The ATPase requires Mg2+ (or Mn+2) but is further stimulated by K+ and other monovalent ions. The monovalent ions are ineffective in the absence of the divalent activating cation. The ATPase has been described with respect to monovalent ion specificity, temperature, pH, substrate specificity, and Mg2+ and K+ concentrations. It was further shown that oligomycin inhibits a part of the total ATPase activity and on the basis of the oligomycin sensitivity it appears that at least 2 membrane associated ATPases are being measured. The mitochondrial fraction is most sensitive to oligomycin and the microsomal fraction is least sensitive to oligomycin. The oligomycin insensitive ATPase appears to be stimulated more by K+ than the oligomycin sensitive ATPase.  相似文献   

5.
E G Kranias  F Mandel  T Wang  A Schwartz 《Biochemistry》1980,19(23):5434-5439
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP) dependent protein kinase on a 22 000-dalton protein. Phosphorylation enhances the initial rate of Ca2+ uptake and Ca2+-ATPase activity. To determine the molecular mechanism by which phosphorylation regulates the calcium pump in SR, we examined the effect of cAMP-dependent protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Cardiac sarcoplasmic reticulum was preincubated with cAMP and cAMP-dependent protein kinse in the presence (phosphorylated SR) and absence (control) of adenosine 5'-triphosphate (ATP). Control and phosphorylated SR were subsequently assayed for formation (4-200 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase in media containing 100 microM [ATP] and various free [Ca2+]. cAMP-dependent phosphorylation of SR resulted in pronounced stimulation of initial rates and levels of E approximately P formed at low free [Ca2+] (less than or equal to 7 microM), but the effect was less at high free Ca2+ (greater than or equal to 10 microM). This stimulation was associated with a decrease in the dissociation constant for Ca2+ binding and a possible increase in Ca2+ sites. The observed rate constant for E approximately P formation of calcium-preincubated SR was not significantly altered by phosphorylation. Phosphorylation also increased the initial rate of E approximately P decomposition. These findings indicate that phosphorylation of cardiac SR by cAMP-dependent protein kinase regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the calcium pump observed at steady state.  相似文献   

6.
Radioactive adenosine triphosphate was synthesized transiently from adenosine diphosphate and radioactive inorganic phosphate by sodium and potassium adenosine triphosphatase from guinea pig kidney. In a first step, K+-sensitive phosphoenzyme was formed from radioactive inorganic phosphate in the presence of magnesium ion and 16 mM sodium ion. In a second step the addition to the phosphoenzyme of adenosine diphosphate with a higher concentration of sodium ion produced adenosine triphosphate. Recovery of adenosine triphosphate from the phosphoenzyme was 10 to 100% in the presence of 96 to 1200 mM sodium ion, respectively. Potassium ion (16mM) inhibited synthesis if added before or simultaneously with the high concentration of sodium ion but had no effect afterward. The half-maximal concentration for adenosine diphosphate was about 12 muM. Ouabain inhibited synthesis. The ionophore gramicidin had no significant effect on the level of phosphoenzyme nor on the rate nor on the extent of synthesis of adenosine triphosphate. The detergent Lubrol WX reduced the rate of phosphoenzyme break-down and the rate of synthesis but did not affect the final recovery. Phospholipase A treatment inhibited synthesis. In a steady state, the enzyme catalzyed a slow ouabain-sensitive incorporation or inorganic phosphate into adenosine triphosphate. These results and other suggest that binding of sodium ion to a low affinity site on phosphoenzyme formed from inorganic phosphate is sufficient to induce a conformational change in the active center which permits transfer of the phosphate group to adenosine diphosphate.  相似文献   

7.
1. (Na+ + K+)-dependent adenosine triphosphatase was phosphorylated on the alpha-subunit by Pi in the presence of Mg2+. Phosphorylation was stimulated by ouabain. The interactions of Pi, Mg2+, and ouabain with the enzyme could be explained by a random terreactant scheme in which the binding of each ligand to the enzyme increased the affinities for the other two. Dissociation constants of all steps of this scheme were estimated. 2. In the presence of Pi and ouabain and without added Mg2+, the phosphoenzyme was formed. Because this could be prevented by ethylenediaminetetraacetic acid, but not ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, phosphoenzyme formation under these conditions was probably dependent on traces of endogenous Mg2+. The ability of this Mg2+ to support phosphorylation could be explained by the large increase in the enzyme's affinity for Mg2+ by ouabain. 3. In the absence of ouabain, Ca2+ did not support phosphorylation and inhibited Mg2+-dependent phosphorylation. At lower concentrations, Ca2+ was competitive with Mg2+. With increasing Ca2+ concentration, negative cooperativity was observed, suggesting the existence of multiple divalent cation sites with equivalent affinities for Mg2+, but varying affinities for Ca2+. 4. In the presence of ouabain, the maximum inhibition of Mg2+-dependent phosphorylation by Ca2+ was 50%. With saturating Pi, Mg2+, and ouabain, the number of sites binding ouabain was equal to the number of sites phosphorylated. Although Ca2+ halved phosphorylation and reduced the affinity for ouabain about 100-fold, it did not affect the number of ouabain sites. 5. We suggest that the enzyme is an alpha-oligomer and that the half-of-the-sites reactivity for phosphorylation in the presence of Pi, Mg2+, ouabain, and optimal Ca2+ is caused by (a) ouabain-induced increase in the affinities of both protomers for Mg2+ and (b) the inability of Ca2+ to replace Mg2+ on one of the protomers.  相似文献   

8.
9.
10.
Guanine nucleotides and Mg2+ differentially regulate agonist binding to adenosine (Ri) receptors in fat-cell plasma membranes. GTP alone decreases binding of the agonist ligand [3H]N6-cyclohexyladenosine (CHA) by increasing the dissociation constant (Kd). Mg2+ alone also decreases [3H]CHA binding, which is associated with a decrease in the number of receptors and in the dissociation constant. In the presence of Mg2+, the effect of GTP is to increase [3H]CHA binding by increasing the total number of receptors. It thus appears that Mg2+ acts specifically at a bivalent-cation site which, with GTP, regulates agonist binding. This putative Mg site is highly sensitive to alkylating agents. Mild treatment with N-ethylmaleimide (NEM) abolishes the characteristic GTP effect on agonist binding in the presence of Mg2+. In addition, the effect of Mg2+ alone is also eliminated. The effect of GTP alone is largely unaltered. Studies of the adenylate cyclase activity indicate that this NEM treatment also abolishes the inhibition of basal activity by adenosine analogues, whereas guanylyl imidodiphosphate inhibition of forskolin-stimulated activity is only slightly impaired at this NEM concentration. These observations indicate that a Mg2+ 'site' or 'component' is required for the integration of receptor (Ri) occupancy with regulation of catalytic activity (C). The regulatory role of Mg2+ is more demonstrable in receptor-GTP-regulatory-protein (Ri-Ni) interactions than in GTP-regulatory-protein-catalytic-unit (Ni-C) interactions.  相似文献   

11.
The 30 N-terminal amino acid residues of the purified ATPase c subunit of Propionigenium modestum have been determined. An oligonucleotide mixture was derived from this sequence and used as probe for cloning the corresponding gene in Escherichia coli. The nucleotide sequence of the gene has been determined and compared with those of ATPase c subunits from other bacteria and chloroplasts. Peculiar sequence similarities are found only at the C-terminus between the c subunits of the ATPases from P. modestum and from Vibrio alginolyticus, another putative Na(+)-translocating ATPase.  相似文献   

12.
The metabolic detoxification of selenite and many other selenium compounds involves a series of S-adenosylmethionine-dependent methylations yielding dimethylselenide (DMSe), which is exhaled, and trimethylselenonium ion (TMSe), which is excreted in the urine. This paper shows that periodate-oxidized adenosine (Adox) inhibits these methylation reactions in vivo and increases the toxicity of selenite. When Adox was injected in mice at 100 mumol/kg 30 min before injection of [75Se]selenite at 0.4 mg Se/kg the appearances of [75Se]DMSe in the breath and [75Se]TMSe in the liver were completely inhibited for 90 min. This was mediated by accumulation of S-adenosylhomocysteine, the methyltransferase inhibitor, in the livers of Adox-treated mice due to inhibition of its hydrolase enzyme. During 24 h, Adox-treated mice excreted no detectable urinary [75Se]TMSe and exhaled only 20% as much [75Se]DMSe as controls. The urine of Adox-treated mice also contained S-adenosylhomocysteine at a level (ca. 4 mM), 200 times that of untreated mice, which provided a convenient index of methylation potential in the intact animal. When three groups of three mice each were injected with 100 mumol Adox/kg, selenite at 4 mg Se/kg, or a combination of the two, the mice receiving the combination were dead within 2 days, while the mice in the other two groups all survived at least 4 days. These results verify the enzymatic nature of selenium methylation in vivo, support its importance in detoxification, and indicate the value of Adox in further studies of selenium metabolism.  相似文献   

13.
14.
3',5'-CAMP phosphodiesterase was partially purified from bovine cerebral cortex. A heat-stable activating factor was separated from the enzyme by chromatography on DEAE-cellulose. The enzyme in crude ammonium sulfate fractions was stimulated by 5 mM CaCl2. This stimulation was reversed by the calcium chelator EGTA. The main phosphodiesterase peak obtained by DEAE-cellulose chromatography was not stimulated by Ca2+. Upon addition of column effluent containing a heat stable factor, Ca2+ activation was restored. Protein activator was inactive when endogenous contaminating Ca2+ was complexed with EGTA. It was concluded that activation of phosphodiesterase requires the presence of both activator and Ca1+. From an analysis of activation of cGMP hydrolysis a kinetic model for the interaction of Ca2+ and protein activator with the phosphodiesterase was developed. Heterotropic cooperativity between the binding of Ca2+ and protein activator to the phosphodiesterase was observed, i.e., Ca1+ decreased the apparent dissociation constant for protein activator and protein activator decreased the apparent dissociation constant for Ca2+.  相似文献   

15.
A rapid mixing technique was used to investigate the effects of Ca2+ ion on the kinetics of ATP hydrolysis by sarcoplasmic reticulum vesicles. "Basic" ATPase measured in the absence of Ca2+ showed an initial burst of inorganic phosphate production. Similarities in the transient state kinetic properties of basic and "extra" or Ca2+-dependent ATPase suggest that the two activities represent a single enzyme species. At low concentrations of Ca2+ (less than 10(-6) M) the time course of the partial reactions of extra ATPase appeared to fit a simple scheme in which the acid-stable, phosphorylated enzyme (E approximately P) breaks down directly to inorganic phosphate and free enzyme. A similar mechanism seemed to apply to moderate levels of ATP and high external concentrations of Ca2+ known to inhibit transport activity. In the intermediate range of Ca2+ concentrations inorganic phosphate production was resolved into two phases consisting of a fast initial rate (burst) and slow steady state. Acid-stable phosphorylated protein showed a transient decay which coincided with the appearance of the burst. This behavior is consistent with a scheme in which E approximately P breaks down to an acid-labile or noncovalent intermediate state (E-P). A slow secondary increase in phosphorylation followed the transient decay in E approximately P. This late phase of protein labeling was eliminated following pretreatment with Triton X-100, sodium oxalate, or diethyl ether which decrease or prevent the formation of a transport gradient. An analysis of the dependence of the steady state level of phosphorylation and rate of inorganic phosphate production on Ca2+ concentration indicated that the phosphorylation mechanism involves interaction of two Ca2+ ions with the enzymatic carrier. The pathway by which E approximately P breaks down, i.e. whether it goes to E + Pi or E-P, may depend on the extent to which these sites are occupied by Ca2+. The transport of Ca2+ is discussed in terms of a flip-flop mechanism in which E approximately P and E-P represent high and low affinity Ca2+ binding states occurring in separate halves of an enzyme dimer.  相似文献   

16.
17.
High-pressure liquid-chromatography and microcalorimetry have been used to determine equilibrium constants and enthalpies of reaction for the disproportionation reaction of adenosine 5′-diphosphate (ADP) to adenosine 5′-triphosphate (ATP) andadenosine 5′-monophosphate (AMP). Adenylate kinase was used to catalyze this reaction. The measurements were carried out over the temperature range 286 to 311 K, at ionic strengths varying from 0.06 to 0.33 mol kg−1, over the pH range 6.04 to 8.87, and over the pMg range 2.22 to 7.16, where pMg = -log a(Mg2+). The equilibrium model developed by Goldberg and Tewari (see the previous paper in this issue) was used for the analysis of the measurements. Thus, for the reference reaction: 2 ADp3− (ao) AMp2− (ao)+ ATp (ao), K° = 0.225 ± 0.010, ΔG° = 3.70 +- 0.11 kJ mol −1, ΔH° = −1.5 ± 1. 5 kJ mol −1, °S ° = −17 ± 5 J mol−1 K−1, and ACPp°≈ = −46 J mo1l−1 K−1 at 298.15 K and 0.1 MPa. These results and the thermodynamic parameters for the auxiliary equilibria in solution have been used to model the thermodynamics of the disproportionation reaction over a wide range of temperature, pH, ionic strength, and magnesium ion morality. Under approximately physiological conditions (311.15 K, pH 6.94, [Mg2+] = 1.35 × 10−3 mol kg−1, and I = 0.23 mol kg−1) the apparent equilibrium constant (KA′ = m(ΣAMP)m(ΣATP)/[ m(ΣADP)]2) for the overall disproportionation reaction is equal to 0.93 ± 0.02. Thermodynamic data on the disproportionation reaction and literature values for this apparent equilibrium constant in human red blood cells are used to calculate a morality of 1.94 × 10−4 mol kg−1 for free magnesium ion in human red blood cells. The results are also discussed in relation to thermochemical cycles and compared with data on the hydrolysis of the guanosine phosphates.  相似文献   

18.
1. The effects of ATP, PP(i) and EDTA on the skeletal-muscle pyruvate kinase reaction at various concentrations of magnesium (where ;magnesium' refers to total Mg(2+), both free and in the form of complexes) were investigated. The reaction rate was determined as the amount of pyruvate formed in a recorded time of incubation. 2. At 44mm-magnesium the K(m) values for ADP and phosphoenolpyruvate were unaltered by the presence of ATP up to 6.8mm in systems buffered with either tris-hydrochloric acid or glycylglycine-sodium hydroxide, but the K(m) values were different in these systems. The K(m) for one substrate was independent of the concentration of the second substrate. 3. At 10mm-magnesium in the tris-hydrochloric acid system ATP inhibited the reaction competitively with respect to ADP and phosphoenolpyruvate. In the glycylglycine-sodium hydroxide system the inhibition appeared to be non-competitive. At 10mm-magnesium the K(m) values were lower than at 44mm-magnesium and dependent on the system used. 4. In the tris-hydrochloric acid system the reaction rate rose with increasing magnesium concentration up to a maximum at a concentration 10-20 times that of ADP. Further increase inhibited the reaction and at 44mm-magnesium the rate was 25-50% of its maximum. This inhibition paralleled that produced by increasing trimethylammonium chloride concentrations and was not due to a specific effect of the Mg(2+) ion. 5. In the presence of 6.8mm-ATP no reaction occurred below 4-6mm-magnesium, and further increase apparently abolished the inhibition as the reaction rate increased and became equal to those obtained in the absence of ATP at 10-25mm-magnesium. Further increase in magnesium concentration gave reaction rates that were slightly higher in the presence of ATP than in its absence. The maximal rate in the presence of ATP was distinctly lower than in its absence. When 6.8mm-PP(i) or 6.8mm-EDTA was present the variations in reaction rate with rising magnesium concentration were similar to that obtained in the presence of ATP below 6-8mm-magnesium but further increase in the magnesium concentration resulted in an increase in the rate up to a maximum comparable with that of the control. The effect of pure chelation was thus a displacement of the reaction maximum to higher magnesium concentrations without changing the maximal rate. When correction had been made for this effect, ATP gave inhibition at 44mm-magnesium that was competitive with respect to ADP (K(i) 2.1x10(-2)m). This degree of inhibition is far less than was reported earlier and its importance for the mechanism of the pyruvate kinase reaction is discussed.  相似文献   

19.
20.
Swelling of pig red cells leads to an increase in a chloride-dependent K flux which can be potentiated by cAMP, whereas cell shrinking causes a selective increase in Na movement which is mediated by a Na/H exchanger. We examined the influence of adenosine and adenosine receptor agonists on the volume-sensitive, ouabain-resistant, chloride-dependent K flux, referred to as Rb flux and volume-activated Na/H exchange pathway. It was found that adenosine and adenosine receptor agonists inhibited the Rb flux. N6-cyclohexyl adenosine (CHA) has been found to be the most potent inhibitor with EC50 of approximately 4.5 microM followed by 2-chloroadenosine (Cl-ado) with EC50 of approximately 27 microM and 5'-(N-ethyl)-carboxamido-adenosine (NECA) with EC50 of approximately 185 microM. CHA also inhibits the cAMP-stimulated Rb flux. However, CHA does not alter the basal intracellular cAMP level nor the intracellular cAMP content raised by exogenously added cAMP. In contrast to the adenosine agonist action on the Rb flux, Na/H exchange, which is activated upon cell shrinkage, exhibits a slight stimulation in response to CHA. These findings suggest that the presence of A1 adenosine receptors on the surface of red cells influences the regulation of volume-activated ion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号