首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Two isoforms of calcineurin beta subunit(beta 1 and beta 2) were identified in rat testis by a monoclonal antibody Va1. Both beta 1 and beta 2 were recovered in calmodulin binding protein fraction and showed calcium shift on SDS-polyacrylamide gel electrophoresis which is the specific character for EF-hand calcium binding protein. beta 2 showed same apparent molecular weight on SDS-PAGE as that of brain calcineurin beta and was found in wide variety of tissues. beta 1 was shown to have six amino acid polypepeptide sequence and it showed higher molecular weight than brain beta and was specific for testis.  相似文献   

2.
We have cloned a cDNA encoding a catalytic subunit of calcineurin (CnA) expressed in Xenopus oocytes. The deduced amino acid sequence indicates 96.3% and 96.8% identities with the mouse and human CnAalpha isoforms, respectively. Xenopus CnA (XCnA) RNA and protein are expressed as maternal and throughout development. Recombinant XCnA protein interacted with calmodulin in the presence of Ca(2+). Deletion of calmodulin binding domain and auto-inhibitory domain revealed calcium independent phosphatase activity, thereby showing that XCnA is likely to be modulated by both calmodulin and calcium.  相似文献   

3.
4.
We have isolated and sequenced overlapping cDNA clones from a breast carcinoma cDNA library containing the entire coding region of both the R1 and R2 subunits of the human ribonucleotide reductase gene. The coding region of the human R1 subunit comprises 2376 nucleotides and predicts a polypeptide of 792 amino acids (calculated molecular mass 90,081). The sequence of this subunit is almost identical to the equivalent mouse ribonucleotide reductase subunit with 97.7% homology between the mouse and human R1 subunit amino acid sequences. The coding region of the human R2 subunit of ribonucleotide reductase comprises 1170 nucleotides and predicts a polypeptide of 389 amino acids (calculated molecular mass 44,883), which is one amino acid shorter than the equivalent mouse subunit. The human and mouse R2 subunits display considerable homology in their carboxy-terminal amino acid sequences, with 96.3% homology downstream of amino acid 68 of the human and mouse R2 proteins. However, the amino-terminal portions of these two proteins are more divergent in sequence, with only 69.2% homology in the first 68 amino acids.  相似文献   

5.
Interleukin 1 (IL 1) is a polypeptide hormone produced by activated macrophages that affects many different cell types involved in immune and inflammatory responses. The cloning and expression of a murine IL 1 cDNA in Escherichia coli encoding a polypeptide precursor of 270 amino acids has been reported, and expression of the carboxy-terminal 156 amino acids of this precursor in E. coli yields biologically active IL 1. By using the murine IL 1 cDNA as a probe, we have isolated its human homolog from cDNA generated to lipopolysaccharide-stimulated human leukocyte mRNA. Nucleotide sequence analysis of this cDNA predicts a protein of analysis of this cDNA predicts a protein of 271 amino acids (termed IL 1 alpha) which shows congruent to 61% homology to its murine counterpart but only 27% homology to a recently characterized human IL 1 precursor (IL 1 beta). We have expressed the carboxy-terminal 154 amino acids of IL 1 alpha in E. coli, purified this protein to homogeneity, and have compared it with pure recombinant murine IL 1 in several different IL 1 assays based on murine and human cells. Recombinant IL 1 is capable of stimulating T cell and fibroblast proliferation and inducing fibroblast collagenase and prostaglandin production, thus proving that a single molecule has many of the activities previously ascribed to only partially purified IL 1 preparations. Our results indicate that there exists a family of at least two human IL 1 genes (alpha and beta) whose dissimilar protein products have similar biological activities.  相似文献   

6.
7.
8.
Genomic clones containing the full coding sequences of the two subunits of the Ca2+/calmodulin-stimulated protein phosphatase, calcineurin, were isolated from a Drosophila melanogaster genomic library using highly conserved human cDNA probes. Three clones encoded a 19.3-kDa protein whose sequence is 88% identical to that of human calcineurin B, the Ca(2+)-binding regulatory subunit of calcineurin. The coding sequences of the Drosophila and human calcineurin B genes are 69% identical. Drosophila calcineurin B is the product of a single intron-less gene located at position 4F on the X chromosome. Drosophila genomic clones encoding a highly conserved region of calcineurin A, the catalytic subunit of calcineurin, were used to locate the calcineurin A gene at position 21 EF on the second chromosome of Drosophila and to isolate calcineurin A cDNA clones from a Drosophila embryonic cDNA library. The structure of the calcineurin A gene was determined by comparison of the genomic and cDNA sequences. Twelve exons, spread over a total of 6.6 kilobases, were found to encode a 64.6-kDa protein 73% identical to either human calcineurin A alpha or beta. At the nucleotide level Drosophila calcineurin A cDNA is 67 and 65% identical to human calcineurin A alpha and beta cDNAs, respectively. Major differences between human and Drosophila calcineurins A are restricted to the amino and carboxyl termini, including two stretches of repetitive sequences in the carboxyl-terminal third of the Drosophila molecule. Motifs characteristic of the putative catalytic centers of protein phosphatase-1 and -2A and calcineurin are almost perfectly conserved. The calmodulin-binding and auto-inhibitory domains, characteristic of all mammalian calcineurins A, are also conserved. A remarkable feature of the calcineurin A gene is the location of the intron/exon junctions at the boundaries of the functional domains and the apparent conservation of the intron/exon junctions from Drosophila to man.  相似文献   

9.
10.
cDNA complementary to mRNA coding for the beta subunit of dog renal (Na+ + K+)-ATPase has been cloned into lambda gt11 and the nucleotide sequence of the DNA has been determined. The amino acid sequence of the beta subunit polypeptide has also been deduced from the DNA. The mature form of the dog kidney beta subunit contains 302 amino acids with three potential asparagine-linked attachment sites for carbohydrate. The initiation methionine is removed during processing of the polypeptide to its mature form. Although the beta subunit is an integral membrane protein there is no signal sequence for the polypeptide, and hydropathy analysis predicts that the beta subunit polypeptide spans the cell membrane only once. Secondary structure predictions and a model for the structure of the beta subunit are proposed. DNA sequencing of the 5' non-coding region of the mRNA revealed a 200 bp inverted repeat from the coding region. Blot hybridization of a fragment of the beta subunit cDNA identified a single mRNA species of 2.7 kb in dog kidney and several rat tissues. RNA from rat liver was deficient in mRNA that hybridized to the dog kidney beta subunit cDNA, although mRNA that hybridized to an alpha subunit cDNA was detected. RNA from a human hepatoma cell line, HepG2, however, contained comparable levels of mRNA for both the alpha and the beta subunits.  相似文献   

11.
A cDNA encoding subunit C of the V-ATPase from bovine chromaffin granules was cloned and sequenced. The gene encodes a hydrophilic protein of 382 amino acids with a calculated molecular weight of 43,989. Hydropathy plots revealed no apparent transmembrane segments and a rather high helix content was detected. A cDNA encoding most of the C subunit of the V-ATPase of human brain was also cloned and sequenced. The deduced amino acid sequence of this gene is almost identical to the bovine polypeptide with only one change of tyrosine 336 that was replaced by histidine in the human gene. Two polypeptide fragments derived from subunit E of V-ATPase from chromaffin granules were sequenced and found to be identical to the predicted amino acid sequence of this subunit from bovine kidney. These observations support the idea that the amino acid sequences of corresponding subunits from different V-ATPases are highly conserved. Unlike the A and B subunits of V-ATPases, that are homologous to the beta and alpha subunits of F-ATPases, subunits C and E showed no homology with analogous subunits of the F-ATPase family. It is proposed that the addition of the C and gamma subunits to the respective V- and F-ATPases during evolution defined them as two separate families of H(+)-ATPases.  相似文献   

12.
We cloned a cDNA encoding a novel synGAP, synGAP-d (GenBank(TM) accession number ), from a rat brain cDNA library. The clone consisted of 4801 nucleotides with a coding sequence of 3501 nucleotides, encoded a protein consisting of 1166 amino acids with >99% homology with 1092 amino acid overlaps to synGAP, and contained a 13-nucleotide insertion to the previously reported synGAP mRNAs, which suggested that the clone was a splice variant of synGAP. We also found that there are at least seven variants in the 3' portion of the synGAP mRNA and that they encoded five different protein isoforms. The coding sequence of these C-terminal variants were classified into alpha1, alpha2, beta1, beta2, beta3, beta4, and gamma, and synGAP-d was classified as the beta1 form. The previously reported synGAPs (synGAP-a, -b, and -c and p135synGAP) can be classified as the alpha1 isoform. All isoforms were expressed specifically in the brain. Unexpectedly, the beta isoform, which lacks a C-terminal PSD-95-binding motif ((S/T)XV), was more restricted to the postsynaptic density fraction than the motif-containing alpha1 isoform. The beta isoform did not interact with PSD-95 but specifically interacted with a nonphosphorylated alpha subunit of Ca(2+)/calmodulin-dependent protein kinase II through its unique C-terminal tail.  相似文献   

13.
In this study, we report the isolation and characterization of a full-length cDNA clone for the hormone-inducible regulatory subunit RII beta (formerly called RII51) of type II cAMP-dependent protein kinase from a human testis cDNA library. The cloned cDNA demonstrated tissue-specific expression of RII beta mRNA in human tissues, with the highest mRNA levels in testis and ovary. The isolated human cDNA clone was 3.3 kilobases (kb) in length and contained 166 base pairs (bp) of G/C-rich 5'-noncoding sequence, an open reading frame of 1254 bp and an A/T-rich 3'-nontranslated region containing 1836 bp followed by an 89 nucleotide long poly(A)-tail. The predicted protein contains 418 amino acids including the start methionine, and the estimated mol wt of human RII beta is 53,856. The nucleotide sequence within the open reading frame and the predicted amino acid sequence of human RII beta are highly conserved compared with partial rat RII beta sequences, displaying 91% and 97% similarity, respectively. Codon preference analysis of the cloned cDNA sequence indicated that the two cAMP-binding domains and the hinge region are highly conserved through evolution, whereas the dimerization domain displayed a codon preference pattern indicative of appearance at a later stage of evolution. The isolated human cDNA detected an FSH- and cAMP-inducible mRNA of 3.2 kb in rat Sertoli cells, thus confirming that the cloned cDNA represents the hormone-inducible regulatory subunit of cAMP-dependent protein kinase. This is the first report documenting the isolation of a full-length cDNA clone for the RII beta of cAMP-dependent protein kinase.  相似文献   

14.
Two DNA molecules complementary to human liver mRNA coding for the alpha-subunit of the stimulatory regulatory component Gs of adenylyl cyclase were cloned. One of the two forms is a full-length cDNA of 1614 nucleotides plus a poly(A) tail of 59 nucleotides. The deduced sequence of 394 amino acids encoded by its open reading frame is essentially identical to that of the alpha-subunits of Gs identified by molecular cloning from bovine adrenals, bovine brain and rat brain. Two independent clones of the other type of cDNA were isolated. Both were incomplete, beginning within the open reading frame coding for the alpha s polypeptide. One codes for amino acids 5 through 394 and the other for amino acids 48 through 394 of the above described cDNA of 1614 nucleotides, and both have the identical 3'-untranslated sequence. They differ from the first cDNA, however, in that they lack a stretch of 42 nucleotides (numbers 214 through 255) and have nucleotides 213 (G) and 256 (G) replaced with C and A, respectively. This results in a predicted amino acid composition of another alpha-subunit of Gs that is shorter by 14 amino acids and contains two substitutions (Asp for Glu and Ser for Gly) at the interface between the deletion and the unchanged sequence. We call the smaller subunit alpha s1 and the larger alpha s2. This is the first demonstration of a structural heterogeneity in alpha s subunits that is due to a difference in amino acid sequence.  相似文献   

15.
Tissue patterns of gene expression were analyzed by measuring mRNA levels and incorporation of radioactive amino acids for cystatin C and beta 2-microglobulin, the two extracellular proteins in the brain with the highest ratio of concentration in cerebrospinal fluid over that in blood plasma. The primary structure of rat cystatin C mRNA from choroid plexus was determined by nucleotide sequencing of cloned cDNA and the tissue patterns of gene expression were analysed by RNA blot analysis and in situ hybridization. Cystatin C was found to be composed of 120 amino acids and to contain a potential site for N-linked glycosylation. The tissue with the highest cystatin C mRNA level was the choroid plexus of the brain. Cystatin C mRNA was also detected in lower levels in other areas of the brain, testis, epididymis, seminal vesicles, prostate, ovary, submandibular gland, and, in trace amounts, in liver. Choroid plexus pieces in culture secreted radioactive cystatin C when incubated with radioactive leucine. Rat beta 2-microglobulin cDNA was cloned and identified by nucleotide sequencing and comparison of the obtained sequence with that of mouse and human beta 2-microglobulin cDNA. Tissue levels of beta 2-microglobulin mRNA in the rat were measured by hybridization to rat beta 2-microglobulin cDNA. The highest levels of beta 2-microglobulin mRNA were observed in liver and choroid plexus. Other parts of the brain and testis contained lower levels of beta 2-microglobulin mRNA.  相似文献   

16.
Translin-associated factor X (TRAX) is the predominantly cytoplasmic binding partner of TB-RBP/translin in mouse testis. Four mouse testis cDNAs encoding specific TRAX-interacting proteins were isolated from a yeast two-hybrid library screen. One novel cDNA designated Tsnaxip1 (TRAX-interacting protein-1) encodes 709 amino acids. We isolated a cDNA encoding the 427 carboxy-terminal amino acids of MEA-2, a Golgi-associated, maleenhanced autoantigen; a cDNA encoding 429 amino acids with 73% homology to centrosomal Akap9; and a cDNA encoding 346 amino acids with 75% homology to SUN1, a predicted human protein that contains a SUN domain (which is present in some perinuclear proteins). Interactions were verified using in vitro synthesized fusion proteins. All four genes were expressed in the testis and enriched in germ cells. Confocal microscopy studies using green fluorescent protein fusion proteins determined that these TRAX-interacting proteins colocalize with TRAX. The data suggest that TRAX may have a function associated with perinuclear organelles during spermatogenesis.  相似文献   

17.
Two fragments of the C-terminal tail of the alpha(1) subunit (CT1, amino acids 1538-1692 and CT2, amino acids 1596-1692) of human cardiac L-type calcium channel (Ca(V)1.2) have been expressed, refolded, and purified. A single Ca(2+)-calmodulin binds to each fragment, and this interaction with Ca(2+)-calmodulin is required for proper folding of the fragment. Ca(2+)-calmodulin, bound to these fragments, is in a more extended conformation than calmodulin bound to a synthetic peptide representing the IQ motif, suggesting that either the conformation of the IQ sequence is different in the context of the longer fragment, or other sequences within CT2 contribute to the binding of calmodulin. NMR amide chemical shift perturbation mapping shows the backbone conformation of calmodulin is nearly identical when bound to CT1 and CT2, suggesting that amino acids 1538-1595 do not contribute to or alter calmodulin binding to amino acids 1596-1692 of Ca(V)1.2. The interaction with CT2 produces the greatest changes in the backbone amides of hydrophobic residues in the N-lobe and hydrophilic residues in the C-lobe of calmodulin and has a greater effect on residues located in Ca(2+) binding loops I and II in the N-lobe relative to loops III and IV in the C-lobe. In conclusion, Ca(2+)-calmodulin assumes a novel conformation when part of a complex with the C-terminal tail of the Ca(V)1.2 alpha(1) subunit that is not duplicated by synthetic peptides corresponding to the putative binding motifs.  相似文献   

18.
We have isolated a cDNA clone encoding a homolog of mammalian calcineurin B (the regulatory subunit of calmodulin-dependent protein phosphatase) by screening a cDNA expression library of Saccharomyces cerevisiae with antiserum against bovine calcineurin B. The yeast calcineurin B homolog (YCNB) is composed of 175 amino acids with a calculated molecular mass of 19,639 daltons and contains four putative Ca(2+)-binding domains. The amino-acid alignment of YCNB with human calcineurin B demonstrates 53% sequence identity and 82% homology. Southern blot analysis indicates that the gene for YCNB is a single-copy gene. Thus, yeast calmodulin-dependent protein phosphatase apparently has a heterodimeric structure similar to that of the enzyme in mammalians.  相似文献   

19.
Complementary DNA clones for the regulatory subunit RI beta of cAMP-dependent protein kinases were isolated from a human testis cDNA library using a mouse RI beta cDNA probe. One clone 2.4 kilobases (kb) in length contained an open reading frame of 1137 bases, and encoded a protein of 379 amino acids (excluding the initiator methionine). The human RI beta protein was one amino acid shorter than the corresponding protein in mouse and rat. The nucleotide similarity to mouse and rat sequences was 85.6% and 84.8%, respectively, while the amino acid similarity was 97.6% and 97.3%, respectively. Northern blot analyses revealed a 2.7 kb mRNA in human tissues and a 2.8 kb mRNA in mouse tissues. Both mouse and human RI beta mRNA were found to be expressed in most tissues, and not restricted to brain and testis as reported by others.  相似文献   

20.
We have isolated cDNA clones from rat brain and human liver encoding a putative isoform of the Na,K-ATPase beta subunit. The rat brain cDNA contains an open reading frame of 870 nucleotides coding for a protein of 290 amino acids with a calculated molecular weight of 33,412. The corresponding amino acid sequence shows 98% identity with its human liver counterpart. The proteins encoded by the rat and human cDNAs exhibit a high degree of primary sequence and secondary structure similarity with the rat Na,K-ATPase beta subunit. We have therefore termed the polypeptides these cDNAs encode a beta 2 subunit with the previously characterized rat cDNA encoding a beta 1 subunit. Analysis of rat tissue RNA reveals that the beta 2 subunit gene encodes a 3.4-kilobase mRNA which is expressed in a tissue specific fashion distinct from that of rat beta 1 subunit mRNA. Cell lines derived from the rat central nervous system shown to lack beta 1 subunit mRNA sequences were found to express beta 2 subunit mRNA. These results suggest that different members of the Na,K-ATPase beta subunit family may have specialized functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号