首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.  相似文献   

2.
We investigated the effect of angiotensin II on intracellular cyclic GMP content and neurite outgrowth as an indicator of cell differentiation in PC12 W cells. Neurite outgrowth was examined by phase-contrast microscopy. Outgrown neurites were classified as small, medium and large, and were expressed as neurites per 100 cells. Angiotensin II (10-7 m) increased the outgrowth of medium and large neurites by mean +/- SEM 20.2 +/- 2.3 and 6.6 +/- 1.4 compared with 1.66 +/- 0.5 and 0.1 +/- 0.06 neurites per 100 cells in control. Cellular cyclic GMP content increased by 50-250% with angiotensin II at concentrations of 10-6-10-4 m. Both blockade of AT2 receptors and of nitric oxide synthase markedly reduced angiotensin II-induced neurite outgrowth and cyclic GMP production. In contrast, B2 receptor blockade had no effect or even increased these angiotensin II effects. Sodium nitroprusside and 8-bromo-cyclic GMP both mimicked the effects of angiotensin II on cell differentiation. The protein kinase G inhibitor KT-5823 inhibited the neurite outgrowth induced by both angiotensin II and 8-bromo-cyclic GMP. Our results demonstrate that angiotensin II can stimulate cell differentiation in PC12 W cells by nitric oxide-related and cyclic GMP-dependent mechanisms. The effects of angiotensin II on cell differentiation and cyclic GMP production were mediated via the AT2 receptor and further enhanced by bradykinin B2 receptor blockade.  相似文献   

3.
The angiotensin II (Ang II) type 2 (AT(2)) receptor is an atypical seven-transmembrane domain receptor. Controversy surrounding this receptor concerns both the nature of the second messengers produced as well as its associated signaling mechanisms. Using the neuronal cell line NG108-15, we have reported previously that activation of the AT(2) receptor induced morphological differentiation in a p21(ras)-independent, but p42/p44(mapk)-dependent mechanism. The activation of p42/p44(mapk) was delayed, sustained, and had been shown to be essential for neurite elongation. In the present report, we demonstrate that activation of the AT(2) receptor rapidly, but transiently, activated the Rap1/B-Raf complex of signaling proteins. In RapN17- and Rap1GAP-transfected cells, the effects induced by Ang II were abolished, demonstrating that activation of these proteins was responsible for the observed p42/p44(mapk) phosphorylation and for morphological differentiation. To assess whether cAMP was involved in the activation of Rap1/B-Raf and neuronal differentiation induced by Ang II, NG108-15 cells were treated with stimulators or inhibitors of the cAMP pathway. We found that dibutyryl cAMP and forskolin did not stimulate Rap1 or p42/p44(mapk) activity. Furthermore, adding H-89, an inhibitor of protein kinase A, or Rp-8-Br-cAMP-S, an inactive cAMP analog, failed to impair p42/p44(mapk) activity and neurite outgrowth induced by Ang II. The present observations clearly indicate that cAMP, a well known stimulus of neuronal differentiation, did not participate in the AT(2) receptor signaling pathways in the NG108-15 cells. Therefore, the AT(2) receptor of Ang II activates the signaling modules of Rap1/B-Raf and p42/p44(mapk) via a cAMP-independent pathway to induce morphological differentiation of NG108-15 cells.  相似文献   

4.
Microexplant cultures from three-day-old rats were used to investigate whether angiotensin II (Ang II), through its AT(1) and AT(2) receptors, could be involved in the morphological differentiation of cerebellar cells. Specific activation of the AT(2) receptor during 4-day treatment induced two major morphological changes. The first was characterized by increased elongation of neurites. The second change was cell migration from the edge of the microexplant toward the periphery. Western blot analyses and indirect immunofluorescence studies revealed an increase in the expression of neuron-specific betaIII-tubulin, as well as an increase in expression of the microtubule-associated proteins tau and MAP2. These effects were demonstrated by co-incubation of Ang II with 1 microM DUP 753 (AT(1) receptor antagonist) or with 10 nM CGP 42112 (AT(2) receptor agonist) but abolished when Ang II was co-incubated with 1 microM PD 123319 (AT(2) receptor antagonist), indicating that differentiation occurs through AT(2) receptor activation and that the AT(1) receptor inhibits the AT(2) effect. Taken together, these results demonstrate that Ang II is involved in cerebellum development for both neurite outgrowth and cell migration, two important processes in the organization of the various layers of the cerebellum.  相似文献   

5.
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.  相似文献   

6.
7.
A versatile parallel synthetic method to obtain three series of non-cyclic analogues of the first drug-like selective angiotensin II AT(2) receptor agonist (1) has been developed. In analogy with the transformation of losartan to valsartan it was demonstrated that a non-cyclic moiety could be employed as an imidazole replacement to obtain AT(2) selective compounds. In all the three series, AT(2) receptor ligands with affinities in the lower nanomolar range were found. None of the analogues exhibited any affinity for the AT(1) receptor. Four compounds, 17, 22, 39 and 51, were examined in a neurite outgrowth cell assay. All four compounds were found to exert a high agonistic effect as deduced from their capacity to induce neurite elongation in neuronal cells, as does angiotensin II.  相似文献   

8.
Blood pressure is elevated and pressor response to angiotensin II (Ang II) is exaggerated in AT2 null mice. The purpose of the present study was to elucidate the mechanism for the increased responsiveness to Ang II in the mice. The contraction of aortic strips generated by Ang II was significantly greater in the AT2 gene-deleted mice than the control, which was completely abolished by AT1 antagonist losartan. The aortic content of AT1 receptor was significantly increased (P < 0.05, n = 5) in the AT2 null mice (212 +/- 58.2 fmol/mg protein) compared with the control (98.2 +/- 55.9 fmol/mg protein). While both AT1 and AT2 mRNAs were expressed in the aorta of the control mice, only AT1 mRNA was expressed in the AT2 knockout mice. The expression of AT1 mRNA in the AT2 knockout mice was significantly higher (1.5-fold, P < 0.05, n = 5) than that in the control. The present study clearly demonstrated that the increased vascular reactivity to Ang II in AT2 knockout mice is at least partly due to an increased vascular AT1 receptor expression and suggested that AT2 counteracts AT1-mediated vascular action of Ang II through downregulation of AT1 receptor by a crosstalk between these receptors by some as yet unknown mechanisms.  相似文献   

9.
Central administration of losartan effectively blocked the increase of blood pressure and drinking response induced by angiotensin II (Ang II) or carbachol. However, the relationship between angiotensin AT(1) receptors and the natriuresis induced by brain cholinergic stimuli is still not clear. The purpose of the study is to reveal the role of brain angiotensin AT(1) receptor in the carbachol-induced natriuresis and expression of neuronal nitric oxide synthase (nNOS) in the locus coeruleus (LC) and proximal convoluted tubule (PCT). Our results indicated that 40 min after intracerebroventricular (ICV) injection of carbachol (0.5 microg), urinary sodium excretion was significantly increased to 0.548+/-0.049 micromol x min(-1) x 100 g(-1). Immunohistochemistry showed that carbachol induced an increase of neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the LC and renal proximal tubular cells. After pretreatment with losartan (20 microg), carbachol-induced urinary sodium excretion was reduced to 0.249+/-0.067 micromol x min(-1) x 100 g(-1). The same was true for carbachol-induced increase of nNOS-IR in the LC and PCT. The present data suggest that ICV cholinergic stimulation could induce a natriuresis and upregulate the activity of nNOS in the LC and PCT. The blockade of AT(1) receptors might downregulate the effects induced by carbachol in the LC and PCT. Consequently, we provide a new evidence that brain angiotensinergic pathway and NO-dependent neural pathway contribute to the natriuresis following brain cholinergic stimulation and thus play an important role in the regulation of fluid homeostasis. Furthermore, the final effect of nitric oxide on proximal tubular sodium reabsorption participated in the natriuresis induced by brain cholinergic stimulation.  相似文献   

10.
11.
Activation of angiotensin II (Ang II) type 1 receptor (AT1R) signaling is reported to play an important role in cardiac hypertrophy. We previously cloned a novel molecule interacting with the AT1R, which we named ATRAP (for Ang II type 1 receptor-associated protein). Here, we report that overexpression of ATRAP significantly decreases the number of AT1R on the surface of cardiomyocytes, and also decreases the degree of p38 mitogen-activated protein kinase phosphorylation, the activity of the c-fos promoter and protein synthesis upon Ang II treatment. These results indicate that ATRAP significantly promotes downregulation of the AT1R and further attenuates certain Ang II-mediated hypertrophic responses in cardiomyocytes.  相似文献   

12.
Embryonic stem cells (ES cells), the pluripotent derivatives of the inner cell mass from blastocysts, have the capacity for unlimited growth, self-renewal and differentiation toward all types of somatic cells. Angiotensin II (Ang II), the most important effector peptide of the renin–angiotensin system, is also an angiogenesis factor. However, the potential impact of Ang II on ES cell differentiation is still unknown. In the present study, we have successfully induced the differentiation of ES cells into smooth muscle cells (SMCs) on collagen IV. Interestingly, incubation of ES cells with Ang II further promoted SMC differentiation from ES cells, which was abolished by prior treatment with Ang II type 1 (AT1) receptor antagonist losartan, but not Ang II type 2 (AT2) receptor antagonist PD123319. Moreover, we found that, in parallel with SMC specific-marker induction, the expression levels of phosphoAkt and NF-Kappa B (NF-κB) p50 were up-regulated by Ang II. Importantly, addition of phosphoinositide-3 kinase (PI3K) inhibitor LY294002 led to a marked inhibition of Ang II induced SMC specific markers, phosphoAkt and NF-κB p50 expression. Furthermore, NF-κB inhibitor BAY11-7082 can inhibit Ang II induced expression of SMC specific markers. Thus, we demonstrate for the first time that Ang II plays a promotive role in the stage of ES cell differentiation to SMCs through AT1 receptor. We further confirmed that PI3K/Akt signaling pathway and NF-κB play key roles in this process.  相似文献   

13.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

14.
Research was undertaken to study the role of central angiotensin in the modulation of male sexual behavior, testing the effect of angiotensin II (Ang II) injections into the medial amygdaloid nucleus (MeA). The sexual behavior of adult male Wistar rats was evaluated, 15 min after bilateral intra-amygdaloid microinjection (0.3 microl) of saline and 5 doses of Ang II: 10; 25; 50; 100, and 150 fmol. The effects of the Ang II receptor blockade were also studied. We tested the effect of coinjection of Ang II (50 fmol) with the AT1 antagonist, losartan (20 pmol) and the AT2 antagonist, CGP 42112 (1 pmol). Ang II inhibited sexual behavior and this inhibition was prevented by the coinjection of AT1 antagonist, losartan, or the AT2 antagonist, CGP 42112. Results show that Ang II has a powerful effect on male sexual behavior, which may be mediated by both AT1 and AT2 receptors.  相似文献   

15.
Angiotensin II (Ang II) is a potent vasoactive peptide and displays growth factor-like properties. Different high-affinity Ang II receptor subtypes (AT1A, AT1B and AT2) have been cloned. They are expressed in various brain structures. Additionally, it has been assumed that Mas could interact directly or indirectly with the renin-angiotensin system. The AT1 receptor mediates pressor and mitogenic effects of Ang II, whereas physiological function and signaling mechanisms of the AT2 receptor remain poorly understood. Recent reports have shown that Ang II could mediate apoptosis through AT2 receptors. Since the AT1A, AT2 and Mas knockout mice provide new tools for uncovering potential actions of Ang II, the cell number in different brain structures of male adult wild-type mice and mice deficient for AT1A, AT2 or Mas was evaluated to get more insight into the role of Ang II in central nervous system development. In nearly all investigated brain structures (cortex, hippocampus, amygdala, thalamus), the cell number was significantly higher in AT2-deficient mice in comparison to wild-type mice. To the contrary, in AT1A-deficient mice the cell number was significantly less than in controls in the lateral geniculate and the medial amygdaloid nucleus. However, cell numbers were not changed in Mas-knockout mice compared to their wild-types. These results show the contrary effects of both angiotensin receptors on cell growth and represent the first demonstration of their action on neuronal cell development evidenced in the adult mouse brain.  相似文献   

16.
Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT(1)R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of mouse iPS cells with AT(1)R may enhance LIF-induced DNA synthesis, by augmenting the generation of superoxide and activating JAK/STAT3, and that AT(1)R stimulation may enhance Col IV-induced differentiation into mesodermal progenitor cells via p38 MAPK activation.  相似文献   

17.
18.
The angiotensin II (Ang II) type 1 receptor mediates various actions of Ang II, whereas the function of the type 2 (AT2) receptor is not well understood. In the mice lacking the gene encoding the AT2 receptor, the pressor response to Ang II was increased although the underlying mechanism is unknown. We tested the hypothesis that vasoconstrictor response is exaggerated in the AT2 receptor null mice. We measured hemodynamic parameters and evaluated systemic vascular resistance (SVR) in the anesthetized open-chest wild-type and AT2 receptor null mice. Ang II infusion caused dose-dependent increases in SVR in both strains, while the response was significantly higher at 0.5 microgram/kg Ang II in the AT2 receptor null mice (305 +/- 53% of baseline) than in the wild-type mice (179 +/- 27% of baseline). To investigate further the vascular contractility, we examined contraction of aortic rings in vitro. The contraction induced by 1 microM Ang II was increased in the AT2 receptor null mice compared with that in the wild-type mice (0.82 +/- 0.11 vs. 0.54 +/- 0.12 g). Ang II-induced contraction was still greater in the AT2 receptor null mice when calibrated by the maximum tension induced by 90 mM KCl. These data suggest that the AT2 receptor modulates vascular contractility, which may influence blood pressure.  相似文献   

19.
We investigated the role of receptor tyrosine kinases in Ang II-stimulated generation of reactive oxygen species (ROS) and assessed whether MAP kinase signaling by Ang II is mediated via redox-sensitive pathways. Production of ROS and activation of NADPH oxidase were determined by DCFDA (dichlorodihydrofluorescein diacetate; 2 micromol/L) fluorescence and lucigenin (5 micromol/L) chemiluminescence, respectively, in rat vascular smooth muscle cells (VSMC). Phosphorylation of ERK1/2, p38MAP kinase and ERK5 was determined by immunoblotting. The role of insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) was assessed with the antagonists AG1024 and AG1478, respectively. ROS bioavailability was manipulated with Tiron (10(-5) mol/L), an intracellular scavenger, and diphenylene iodinium (DPI; 10(-6) mol/L), an NADPH oxidase inhibitor. Ang II stimulated NADPH oxidase activity and dose-dependently increased ROS production (p < 0.05). These actions were reduced by AG1024 and AG1478. Ang II-induced ERK1/2 phosphorylation (276% of control) was decreased by AG1478 and AG1024. Neither DPI nor tiron influenced Ang II-stimulated ERK1/2 activity. Ang II increased phosphorylation of p38 MAP kinase (204% of control) and ERK5 (278% of control). These effects were reduced by AG1024 and AG1478 and almost abolished by DPI and tiron. Thus Ang II stimulates production of NADPH-inducible ROS partially through transactivation of IGF-1R and EGFR. Inhibition of receptor tyrosine kinases and reduced ROS bioavaliability attenuated Ang II-induced phosphorylation of p38 MAP kinase and ERK5, but not of ERK1/2. These findings suggest that Ang II activates p38MAP kinase and ERK5 via redox-dependent cascades that are regulated by IGF-1R and EGFR transactivation. ERK1/2 regulation by Ang II is via redox-insensitive pathways.  相似文献   

20.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands seem to induce anticancer effects on prostate cancer cells, but the mechanism is not clear. The effect of PPARgamma ligands omega-6 fatty acids and ciglitazone (2-15 microM)--on proliferation, and apoptosis of LNCaP, PC-3, DU145, CA-K and BPH-K cells was studied. PPARgamma ligands led to: (1) reduction of proliferation (20-50%) of all the studied cell lines, (2) stimulation of differentiation of prostate cancer cells through an increased expression (1.5-3-fold: LNCaP, DU145, BPH-K) or reexpression (PC-3, CA-K) of E-cadherin with parallel inhibition of N-cadherin expression (PC-3, CA-K) and (3) down-regulation (1-2-fold) of beta-catenin and c-myc expression. The selective PPARgamma antagonist GW9662 abolished the effect of those ligands on prostate cancer cells. These results suggest that inhibition of beta-catenin and in effect c-myc expression through activation of PPARgamma may help prostate cancer cells to restore several characteristics of normal prostate cells phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号