首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reflectance spectrophotometry through the skull was used to investigate carbon monoxide (CO) binding by tissue hemoproteins in the brains of barbiturate-anesthetized Sprague-Dawley rats. After splenectomy and extensive perfluorotributylamine exchange transfusion, steady-state spectral scans were obtained in Soret and visible wave-length regions during O2 ventilation, during subsequent exposure to O2-enriched gases containing 1, 3, or 5% CO, and finally after N2 anoxia. These CO exposures were well-tolerated and electroencephalograph (EEG) activity continued to be present. Initial difference spectra were influenced by CO binding to residual hemoglobin, but spectral evidence of CO-mediated b-type cytochrome reduction was obtained in the visible region as CO concentration was increased to 3 or 5%. This was associated with Soret spectra compatible with formation of the reduced cytochrome a3-CO complex. Reduction of cytochrome a at 605 nm and cytochrome c + c1 at 550 nm was absent. These findings may indicate respiratory chain branching through b cytochromes, either to a separate a3-like oxidase independent of the classical cytochrome aa3 or to an unidentified alternative CO-sensitive oxidase.  相似文献   

2.
Membranes from free-living Rhizobium japonicum were isolated to study electron transport components involved in H2 oxidation. The H2/O2 uptake rate ratio in membranes was approximately 2. The electron transport inhibitors antimycin A, cyanide, azide, hydroxylamine, and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited H2 uptake and H2-dependent O2 uptake significantly. H2-reduced minus O2-oxidized absorption difference spectra revealed peaks at 551.5, 560, and 603 nm, indicating the involvement of cytochromes c, b, and a-a3, respectively. H2-dependent cytochrome reduction was completely inhibited in the presence of 0.15 mM HQNO. This inhibition was relieved by the addition of 0.1 mM menadione. Evidence is presented for the involvement of two b-type cytochromes in H2 oxidation. One b-type cytochrome was not reduced by ascorbate and had an absorption peak at 560 nm. The reduction of this cytochrome by H2 was not inhibited by cyanide. A second b-type cytochrome, cytochrome b', was not reduced by H2 in the presence of cyanide. This cytochrome had an absorption peak at 558 nm. Carbon monoxide difference spectra with H2 as reductant provided evidence for the involvement of cytochrome o as well as cytochrome a3 in H2 oxidation. H2 uptake activity in cell-free extracts was inhibited by UV light irradiation. Most of the activity of the UV-treated extracts was restored with the addition of ubiquinone. The restored activity was inhibited by cyanide. A branched electron transport pathway from H2 to O2 is proposed.  相似文献   

3.
1. Mitochondria isolated from the gut-dwelling nematodes Nippostrongylus brasiliensis and Ascaridia galli (muscle and gut + reproductive tissue) were examined for cytochromes, and it was observed that N. brasiliensis and A. galli muscle tissue mitochondria contained a-, b- and c-type cytochromes, but their stoichiometries were quite different (1:2:1.9 and 1:11.4:13.6 respectively); A. galli gut + reproductive-tissue mitochondria, however, only contained b and c cytochromes, in a ratio of 1:0.8. 2. CO difference spectra showed the presence of CO-reacting b-type cytochrome(s) in all three types of mitochondria; the fast-reacting species comprised 30, 44 and 39% of the total in N. brasiliensis, A. galli muscle and A. galli gut + reproductive-tissue mitochondria respectively. 3. Cytochrome aa3 was observed in N. brasiliensis mitochondria and in those from A. galli muscle, but was below the level of detectability (less than 0.005 nmol/mg of protein) for A. galli gut + reproductive-tissue mitochondria. 4. Photochemical action spectra for the reversal of CO inhibition of the endogenous respiration of whole worms (at 24 microM- and 40 microM-O2 respectively for N. brasiliensis and A. galli) gave maxima at 598 and 542-543 nm, corresponding to the alpha- and beta-absorption maxima of cytochrome aa3, and at 567 nm (b-type cytochrome) for both worms. These results suggest that cytochrome aa3 is the major functional oxidase in N. brasiliensis, whereas the CO-reacting b-type cytochrome dominates in A. galli.  相似文献   

4.
The oxidation of cytochromes during the reduction of N2O to N2 by a denitrifying bacterium was studied spectrophotometrically. The reduced b- and c-type cytochromes are partially oxidized when N2O is added to intact cells reduced with lactate under anaerobic conditions. The oxidation of cytochromes is inhibited non-competitively by azide, cyanide, 2,4-dinitrophenol and CuSO4, which inhibit the reduction of N2O to N2. In the presence of each inhibitor at a high concentration, at which the reduction of N2O to N2 is perfectly inhibited, cytochromes are not oxidized by N2O, while when an adequate, low concentration of inhibitor is added, b-type cytochrome is partially oxidized but c-type cytochrome is apparently not oxidized. In cell-free extracts, prepared by the sonic disruption of cells, that have entirely lost their activity in the reduction of N2O to N2, cytochromes are not oxidized by N2O. From the above results, it was concluded that b-type and c-type cytochromes should participate in the electron transport mechanism of the reduction of N2O to N2.  相似文献   

5.
Mutant strains of Rhizobium japonicum constitutive for H2 uptake activity (Hupc) contained significantly more membrane-bound b-type cytochrome than did the wild type when grown heterotrophically. The Hupc strains contained approximately three times more dithionite- and NADH-reducible CO-reactive b-type cytochrome than did the wild type; the absorption features of the CO spectra were characteristic of cytochrome o. This component, designated cytochrome b', was not reduced by NADH in the presence of cyanide. Cytochrome o from the wild type (SR) and cytochrome b' from mutants SR476 and SR481 bound to CO with similar dissociation constants of 5.4, 7.4, and 5.6 microM, respectively. NADH-dependent reduction of cytochrome b' from SR476 and SR481 and the cytochrome o from SR followed pseudo-first-order kinetics with similar rate constants. Based on these spectral, ligand-binding, and kinetic measurements, it was concluded that cytochrome b' expressed by the Hupc mutants is equivalent to cytochrome o found in the wild type. H2, NADH, and succinate each reduced the same amount of total b-type cytochrome in membranes from SR481, and the rate of H2-dependent cytochrome o reduction was significantly less than with succinate or NADH as the reductants. It was concluded that neither cytochrome o nor any b-type cytochrome expressed by the Hupc mutants was unique to the H2 oxidation system. At low O2 concentrations, the inhibition of H2 and NADH oxidase activities by CO closely paralleled the binding of CO to cytochrome o rather than cytochromes a3 or c'. This suggested that NADH and H2 oxidation involved primarily cytochrome o as the terminal oxidase at low O2 tensions.  相似文献   

6.
Presence of three B-type cytochromes in swine cerebral microsomes   总被引:1,自引:0,他引:1  
In swine cerebral microsomes purified with sucrose density gradient and glycerol-cholate gradient centrifugations, it was observed that a new b-type cytochrome which had alpha-peak at 560 nm and Soret peak at 428 nm at 23 degrees C was reduced preferentially by anaerobic NADPH in the presence of cyanide. The b5-type cytochromes were reduced completely by both NADH and NADPH anaerobically. Three b-type cytochromes were partially purified into two b-type, spectroscopically distinct from each other, and the new b-type (b560-5) cytochromes.  相似文献   

7.
1. Electron-transport particles derived from Escherichia coli grown aerobically contain three b-type cytochromes with mid-point oxidation-reduction potentials at pH7 of +260mV, +80mV and -50mV, with n=1 for each. The variation of these values with pH was determined. 2. E. coli develops a different set of b-type cytochromes when grown anaerobically on glycerol with fumarate or nitrate as terminal electron acceptor. Electron-transport particles of fumarate-grown cells contain b-type cytochromes with mid-point potentials at pH7 of +140mV and +250mV (n=1). These two cytochromes are also present in cells grown with nitrate as terminal acceptor, where an additional cytochrome b with a mid-point potential of +10mV (n=1) is developed. 3. The wavelengths of the alpha-absorption-band maxima of the b-type cytochromes at 77K were: (a) for aerobically grown cells, cytochrome b (E(m7) +260mV), 556nm and 563nm, cytochrome b (E(m7) +80mV), 556nm and cytochrome b (E(m7)-50mV), 558nm; (b) for anaerobically grown cells, cytochrome b (E(m7) +250mV), 558nm, cytochrome b (E(m7) +40mV), 555nm and cytochrome b (E(m7) +10mV), 556nm. 4. Cytochrome d was found to have a mid-point potential at pH7 of +280mV (n=1). 5. Cytochrome a(1) was resolved as two components of equal magnitude with mid-point potentials of +260mV and +160mV (n=1). 6. Redox titrations performed in the presence of CO showed that one of the b-type cytochromes in the aerobically grown cultures was reduced, even at the upper limits of our range of electrode potentials (above +400mV). Cytochrome d was also not oxidizable in the presence of CO. Neither of the cytochromes a(1) was affected by the presence of CO.  相似文献   

8.
The b-type cytochrome in porcine neutrophils in situ was studied by the low temperature absorption spectroscopy at 77 K. Absolute spectra of the dithionite-reduced cell suspension revealed the existence of a b-type cytochrome with alpha, beta, and Soret absorption maxima at 558, 528, and 426 nm, respectively. The alpha band was unsymmetrical and showed a main peak at 558 nm with a shoulder at around 556 nm. When the cells were anaerobically stimulated either by phorbol myristate acetate or arachidonate followed by reduction by dithionite, the alpha band split clearly into double peaks at 555.5 and 558 nm, suggesting the presence of at least two states or species of the b-type cytochrome(s) in the cell. By monitoring absolute spectra of neutrophils at 77 K, we examined the possibility of CO binding to the b-type cytochrome. The absorption spectra of reduced b-type cytochrome in the presence and absence of CO, however, were not distinguishable under various conditions including equilibration with CO under high pressure or CO treatments in a dark room or at pH 8.5, 7.0, or 5.5. In contrast, the spectra of the reduced cytochrome disappeared immediately after exposure to O2, whether or not the cells had been treated with CO. The results indicate that the cytochrome does not form a CO complex in situ but reacts with O2, either directly or indirectly.  相似文献   

9.
In order to identify the b-type cytochrome involved in the nitrate reduction in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, the b-type cytochromes in the spheroplast membranes were characterized. Difference spectra at 77K of spheroplast membranes indicated the presence of two b-type cytochromes with a bands at 556.5 and 562 nm. Three components considered to be of the b-type cytochrome were resolved by anaerobic potentiometric titration at 560-572 nm. Their midpoint potentials at pH 7, Em,7, were - 135 mV, +40 mV and +175 nm and their approximate reduced minus oxidized maxima were determined to be at 565 nm (562 nm at 77K), 560 nm (556.5 nm) and 560 nm (556.5 nm), respectively. These values are almost the same as those reported for R. sphaeroides. The Em,7 value of the cytochrome c involved in the nitrate reductase of this denitrifier was determined to be 250 mV. A b-type cytochrome reduced with NADH and FMN was oxidized by nitrate in chromatophore membranes. The possibility that cytochrome b (Em,7 = 175 mV) is involved in the nitrate reduction is discussed.  相似文献   

10.
Cultured cells of a Rhizobium phaseoli wild-type strain (CE2) possess b-type and c-type cytochromes and two terminal oxidases: cytochromes o and aa3. Cytochrome aa3 was partially expressed when CE2 cells were grown on minimal medium, during symbiosis, and in well-aerated liquid cultures in a complex medium (PY2). Two cytochrome mutants of R. phaseoli were obtained and characterized. A Tn5-mob-induced mutant, CFN4201, expressed diminished amounts of b-type and c-type cytochromes, showed an enhanced expression of cytochrome oxidases, and had reduced levels of N,N,N',N'-tetramethyl-p-phenylenediamine, succinate, and NADH oxidase activities. Nodules formed by this strain had no N2 fixation activity. The other mutant, CFN4205, which was isolated by nitrosoguanidine mutagenesis, had reduced levels of cytochrome o and higher succinate oxidase activity but similar NADH and N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activities when compared with the wild-type strain. Strain CFN4205 expressed a fourfold-higher cytochrome aa3 content when cultured on minimal and complex media and had twofold-higher cytochrome aa3 levels during symbiosis when compared with the wild-type strain. Nodules formed by strain CFN4205 fixed 33% more N2 than did nodules formed by the wild-type strain, as judged by the total nitrogen content found in plants nodulated by these strains. Finally, low-temperature photodissociation spectra of whole cells from strains CE2 and CFN4205 reveal cytochromes o and aa3. Both cytochromes react with O2 at -180 degrees C to give a light-insensitive compound. These experiments identify cytochromes o and aa3 as functional terminal oxidases in R. phaseoli.  相似文献   

11.
The cytoplasmic membrane of the H37Ra strain of Mycobacterium tuberculosis has been isolated free of cell wall.

These membrane preparations contain very small quantities of cytochromes c, b and cytochrome oxidase. The cytochrome c is not extracted by any method attempted. The cytochrome b is reducible only by dithionite and is believed not to be involved in the direct transfer of electrons during the oxidation of NADH by these preparations. The NADH oxidase activity of the membrane is inhibited by high concentrations of cyanide and also by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide (HQNO). The cytochrome oxidase of the membrane contains both cytochromes a and a3 and is present in low concentrations relative to cytochrome c. The cytochrome a3 component was identified by characteristic complexes with both CO and cyanide and shows a γ-band absorption maximum at a slightly lower wavelength than the cytochrome oxidase of mammalian mitochondria (442 nm vs. 445 nm). The functional activity of the cytochrome oxidase is indicated by the inhibition of reoxidation of reduced cytochromes c and a in the presence of cyanide.  相似文献   


12.
The cytochromes of Acanthamoeba castellanii.   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Low-temperature difference spectra of gradient-purified mitochondria of Acanthamoeba castellanii reveal the presence of cytochromes b-555, b-562 and c-549, with a-type cytochromes having a broad asymmetrical maximum at 602 nm; these components were also observed in specta of whole cells. 2. The a-type cytochromes are unusual in that they have split Soret absorption maxima (at 442 and 449 nm) and an uncharacteristic CO difference spectrum. 3. CO difference spectra of whole cells and 'microsomal' membranes show large amounts of cytochrome P-420 compared with cytochrome P-450. 4. Difference spectra in the presence of cyanide indicate the presence of an a-type cytochrome and two cyanide-reacting components, one of which may be cytochrome a3. 5. Whole-cell respiration in a N2/O2 (19:1) atmosphere was decreased by 50%, suggesting the presence of a low-affinity oxidase. This lowered respiration is inhibited by 50% by CO, and the inhibition is partially light-reversible; photochemical action spectra suggest that cytochrome a3 contributes to this release of inhibition. Other CO-reacting oxidases are also present. 6. The results are discussed with the view that cytochrome a3 is present in A. castellanii, but its identification in CO difference spectra is obscured by other component(s).  相似文献   

13.
Experiments employing electron transport inhibitors, room- and low-temperature spectroscopy, and photochemical action spectra have led to a model for the respiratory chain of Pseudomonas carboxydovorans. The chain is branched at the level of b-type cytochromes or ubiquinone. One branch (heterotrophic branch) contained cytochromes b558, c, and a1; the second branch (autotrophic branch) allowed growth in the presence of CO and contained cytochromes b561 and o (b563). Electrons from the oxidation of organic substrates were predominantly channelled into the heterotrophic branch, whereas electrons derived from the oxidation of CO or H2 could use both branches. Tetramethyl-p-phenylenediamine was oxidized via cytochromes c and a exclusively. The heterotrophic branch was sensitive to antimycin A, CO, and micromolar concentrations of cyanide. The autotrophic branch was sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide, insensitive to CO, and inhibited only by millimolar concentrations of cyanide. The functioning of cytochrome a1 as a terminal oxidase was established by photochemical action spectra. Reoxidation experiments established the functioning of cytochrome o as an alternative CO-insensitive terminal oxidase of the autotrophic branch.  相似文献   

14.
1. Purified mitochondria have been prepared from wild type Paramecium tetraurelia and from the mutant Cl1 which lacks cytochrome aa3. Both mitochondrial preparations are characterized by cyanide insensitivity. Their spectral properties and their redox potentials have been studied. 2. Difference spectra (dithionite reduced minus oxidized) of mitochondria from wild type P. tetraurelia at 77 K revealed the alpha peaks of b-type cytochrome (s) at 553 and 557 nm, of c-type cytochrome at 549 nm and a-type cytochrome at 608 nm. Two alpha peaks at 549 and 545 nm could be distinguished in the isolated cytochrome c at 77 K. After cytochrome c extraction from wild type mitochondria, a new peak at 551 nm was unmasked, probably belonging to cytochdrome c1. The a-type cytochrome was characterized by a split Soret band with maxima at 441 and 450 nm. The mitochondria of the mutant Cl1 in exponential phase of growth differed from the wild type mitochondria in that cytochrome aa3 was absent while twice the quantity of cytochrome b was present. In stationary phase, mitochondria of the mutant were characterized by a new absorption peak at 590 nm. 3. Cytochrome aa3 was present at a concentration of 0.3 nmol/mg protein in wild type mitochondria and ubiquinone at a concentration of 8 nmol/mg protein both in mitochondria of the wild type and the mutant Cl1. Cytochrome aa3 was more susceptible to heat than cytochromes b and c,c1.  相似文献   

15.
The reaction of cyanide with cytochrome aa3 in intact mitochondria is known to differ significantly from the reaction with the isolated enzyme. To examine the cyanide reaction with cytochrome aa3 in situ, we studied the spectral characteristics and the reaction kinetics of cyanide with reduced brain cytochrome aa3 in an isolated perfused rat head preparation. Anaesthetized rats underwent bilateral carotid-arterial cannulation. The head (skull intact, muscle removed) was perfused with a crystalloid solution containing Na2S2O4, and the animal was then decapitated. By means of reflectance spectrophotometry the reaction of cyanide with cytochrome aa3 was continuously monitored with the use of the 590 nm-575 nm, 610 nm-575 nm and 590 nm-610 nm wavelength pairs. We found that: the kinetics of the absorbance change at 590 nm and 610 nm were similar, with almost identical apparent rate constants, suggesting that these spectral changes are the results of the formation of a single complex; the difference spectrum obtained on addition of cyanide to the fully reduced preparation showed a peak at 588 nm and a trough at 610 nm, consistent with spectral characteristics of the cyanide-ferrocytochrome aa3 complex in isolated enzyme and isolated mitochondria in vitro; this observation underscores the accuracy of monitoring the effects of inhibitors of mitochondrial function on cytochrome redox reactions in situ; the half-maximal (K0.5) effect was approx. 50 microM, significantly lower than that in vitro. The lower apparent K0.5 for cyanide in this preparation in situ may be due to a difference in the pH of the two systems. This approach provides the means to study the inhibitors of mitochondrial function in intact brain under a physiological environment.  相似文献   

16.
Electron transport components involved in H2 oxidation were studied in membranes from Rhizobium japonicum bacteroids. Hydrogen oxidation in membranes was inhibited by antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide with Ki values of 39.4 and 5.6 microM, respectively. The inhibition of H2 uptake by cyanide was triphasic with Ki values of 0.8, 9.9, and 93.6 microM. This result suggested that three cyanide-reactive components were involved in H2 oxidation. H2-reduced minus O2-oxidized absorption difference spectra showed peaks at 551.5 and 560 nm, indicating the involvement of c- and b-type cytochromes, respectively. This spectrum also revealed a trough at 455 nm, showing that H2 oxidation involves a flavoprotein. This flavoprotein was not reduced by H2 in the presence of cyanide. The inhibition of H2 or cytochrome c oxidation by the flavoprotein inhibitor Atebrin was monophasic; the Ki values were similar for both substrates. A role for the flavoprotein as a terminal oxidase was implicated based on its high redox potential and its sensitivity to cyanide. Cytochromes o and c-552 were identified based on their ability to bind carbon monoxide and cyanide.  相似文献   

17.
Apparent Km values for O2 for the soil amoeba Acanthamoeba castellanii determined polarographically and by bioluminescence gave similar values (0.37 and 0.41 microM respectively). Mitochondria oxidizing succinate or NADH in the presence or absence of ADP gave values in the range 0.21-0.36 microM-O2. Oxidation of respiratory-chain components to 50% of the aerobic steady states in intact cells was observed at the following O2 concentrations: cytochrome aa3, 0.1-0.25 microM; cytochrome c, 0.3-0.6 microM; cytochrome b, 0.35-0.45 microM; flavoprotein, 2 microM. In isolated mitochondria corresponding values for a-, c- and b-type cytochromes were 0.007, 0.035-0.05 and 0.06-0.09 microM-O2. It is concluded that an O2 gradient exists between plasma membrane and mitochondria in A. castellanii.  相似文献   

18.
Cerebrocortical b-cytochromes have been found to be sensitive to reduction in the presence of CO and O2 in vivo. CO-mediated cytochrome b reduction responses in "bloodless" rats were correlated in this study with changes in concentrations of high energy and glycolytic intermediates measured in cortex after rapid brain freezing. Cytochrome redox state and metabolite concentrations also were compared with cerebral blood flow (CBF) and cerebral metabolic rate for O2 (CMRo2) measured before and after CO administration. No definite biochemical evidence of energy limitation was found in parietal cortex after the fluorocarbon-for-blood exchange; however, CO had direct effects on brain metabolite concentrations. Fifteen-minute CO exposures at inspired CO/O2 of 0.003-0.06 increased cerebrocortical phosphocreatine and ADP and decreased creatine concentration. CO exposure produced no significant changes in either ATP concentration or CMRo2, although CBF increased slightly. These findings may be interpreted to indicate that CO binding to cytochrome aa3 at low CO/O2 in vivo increases extramitochondrial pH relative to that within the mitochondrial matrix. In the process, cytochrome b reduction levels increase, possibly signaling an increased efficiency of oxidative phosphorylation relative to O2 uptake by unblocked respiratory chains.  相似文献   

19.
The nature of the cyanide-resistant respiration of Taenia crassiceps metacestode was studied. Mitochondrial respiration with NADH as substrate was partially inhibited by rotenone, cyanide and antimycin in decreasing order of effectiveness. In contrast, respiration with succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was more sensitive to antimycin and cyanide. The saturation kinetics for O2 with NADH as substrate showed two components, which exhibited different oxygen affinities. The high-O2-affinity system (Km app=1.5 microM) was abolished by low cyanide concentration; it corresponded to cytochrome aa3. The low-O2-affinity system (Km app=120 microM) was resistant to cyanide. Similar O2 saturation kinetics, using succinate or ascorbate-TMPD as electron donor, showed only the high-O2-affinity cyanide-sensitive component. Horse cytochrome c increased 2-3 times the rate of electron flow across the cyanide-sensitive pathway and the contribution of the cyanide-resistant route became negligible. Mitochondrial NADH respiration produced significant amounts of H2O2 (at least 10% of the total O2 uptake). Bovine catalase and horse heart cytochrome c prevented the production and/or accumulation of H2O2. Production of H2O2 by endogenous respiration was detected in whole cysticerci using rhodamine as fluorescent sensor. Thus, the CN-resistant and low-O2-affinity respiration results mainly from a spurious reaction of the respiratory complex I with O2, producing H2O2. The meaning of this reaction in the microaerobic habitat of the parasite is discussed.  相似文献   

20.
Titration of cyanide-incubated cytochrome c oxidase (ox heart cytochrome aa3) with ferrocytochrome c or with NNN'N'-tetramethyl-p-phenylenediamine initially introduces two reducing equivalents per mol of cytochrome aa3. The first equivalent reduces the cytochrome a haem iron; the second reducing equivalent is not associated with reduction of the 830 nm chromophores (e.p.r.-detectable copper) but is probably required for reduction of the e.p.r.-undetectable copper. Excess reductant introduces a third reducing equivalent into the cyanide complex of cytochrome aa3. During steady-state respiration in the presence of cytochrome c and ascorbate, the 830 nm chromophore is almost completely oxidized. It is reduced more slowly than cytochrome a on anaerobiosis. In the presence of formate or azide, some reduction at 830 nm can be seen in the steady state; in an oxygen-pulsed system, a decrease in steady-state reduction of cytochromes c and a is associated with ab increased reduction of the 830 nm species. In the formate-inhibited system the reduction of a3 on anaerobiosis shows a lag phase, the duration of which corresponds to the time taken for the 830 nm species to be reduced. It is concluded that the e.p.r.-undetectable copper (CuD) is reduced early in the reaction sequence, whereas the detectable copper (CUD) is reduced late. The latter species is probably that responsible for reduction of the cytochrome a3 haem. The magnetic association between undetectable copper and the a3 haem may not imply capability for electron transfer, which occurs more readily between cytochrome a3 and the 830 nm species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号