首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic consumption of ethanol in adult rats and humans leads to reduced AVP-producing neurons, and prenatal ethanol (PE) exposure has been reported to cause changes in the morphology of AVP-producing cells in the suprachiasmatic nucleus of young rats. The present studies further characterize the effects of PE exposure on AVP in the young adult rat, its hypothalamic synthesis, pituitary storage, and osmotically stimulated release. Pregnant rats were fed a liquid diet with 35% of the calories from ethanol or a control liquid diet for days 7-22 of pregnancy. Water consumption and urine excretion rate were measured in the offspring at 60-68 days of age. Subsequently, the offspring were infused with 5% NaCl at 0.05 ml.kg(-1).min(-1) with plasma samples taken before and at three 40-min intervals during infusion for measurement of AVP and osmolality. Urine output and water intake were approximately 20% greater in PE-exposed rats than in rats with no PE exposure, and female rats had a greater water intake than males. The relationship between plasma osmolality and AVP in PE-exposed rats was parallel to, but shifted to the right of, the control rats, indicating an increase in osmotic threshold for AVP release. Pituitary AVP was reduced by 13% and hypothalamic AVP mRNA content was reduced by 35% in PE-exposed rats. Our data suggest that PE exposure can cause a permanent condition of a mild partial central diabetes insipidus.  相似文献   

2.
Plasma vasopressin concentration (PAVP), renal function, and effectors of vasopressin release were evaluated in male volunteers during running at heart rates of 0, 35, 70, and 100% of maximum after 10 h abstinence from water (normal hydration) and at 100% after ingestion of 300 ml water. Plasma renin activity (PRA) and PAVP were linearly correlated and correlated to work intensity over all observations. Changes in PAVP were not correlated with changes in plasma osmolality (POSMOL) and plasma volume (PV) over all observations. Furthermore, despite similar changes in POSMOL, PV, PRA, body weight, mean arterial pressure, and plasma lactate concentration, the increase in PAVP after maximal exercise was greater during normal hydration than the water-supplemented state. Decreased urine flow observed in association with exercise was characterized by increased free water and decreased osmotic and creatinine clearances. Thus increased PAVP associated with exercise appears not to play a role in the concomitant antidiuresis. Vasopressin stimuli are probably variable at different times during exercise and may include factors other than those measured.  相似文献   

3.
A. Chapdelaine  A. Lanthier 《CMAJ》1963,88(24):1184-1192
Observations are presented on two patients with chronic compulsive polydipsia who showed a relative defect in renal concentrating capacity. After excluding all possible metabolic and renal causes of hyposthenuria and after obtaining normal kidney biopsies, both patients were studied in metabolic balance on a constant diet under the following conditions: (a) dehydration (loss of 3-5% body weight), (b) water loading and response to hypertonic saline, and (c) water loading and response to intravenous vasopressin (Pitressin). Throughout these studies the following parameters were observed: plasma and urine osmolality, glomerular filtration rate (inulin), renal plasma flow (P.A.H.), osmolar clearance and clearance of free water. In both patients the concentration defect was not related to variations in glomerular filtration rate or osmotic load. There was no correlation between the degree of hypoosmolality and the renal concentrating defect. Contrary to reports from other laboratories, restriction of water intake and chronic administration of intramuscular vasopressin did not correct the concentration defect.  相似文献   

4.
AVP synthesis, storage, and osmotically stimulated release are reduced in young adult rats exposed prenatally to ethanol (PE). Whether the reduced release of AVP to the osmotic stimulus is due to impairment of the vasopressin system or specifically to an osmoreceptor-mediated release is not known. The present experiments were done, therefore, to determine whether a hemorrhage-induced AVP response would also be diminished in PE-exposed rats. Pregnant rats were fed either a control liquid diet [no prenatal ethanol (NPE)] or a liquid diet with 35% of the calories from ethanol from days 7-21 of pregnancy. Offspring were weaned at 3 wk of life. At 11 wk of age, femoral arterial catheters were surgically placed, and blood volumes were determined at 12 wk. Three days later, two hemorrhages of 10% of the blood volume were performed with samples taken before and 10 min after the hemorrhages. After a 20% blood loss, plasma AVP was 19% higher in NPE rats than in the PE rats despite no differences in mean arterial blood pressure (MABP). Also, hypothalamic AVP mRNA and pituitary AVP content were reduced in PE rats. Furthermore, confirming an earlier report of sex differences in AVP release, the hemorrhage-induced hormone response was twofold greater in female rats than male rats, regardless of previous ethanol exposure. These studies demonstrate that the AVP response to hemorrhage is reduced in PE rats independently of differences in MABP. The data are compatible with a theory of a reduced number of hemorrhage-responsive vasopressinergic neurons capable of stimulated AVP release in PE rats.  相似文献   

5.
In experiments on non-anesthetized Wistar white rats there was studied reaction of kidney to an intramuscular injection of arginine vasotocin or arginine vasopressin at doses from 0.001 to 0.05 µg/100 g body mass on the background of a water load. Water (5 ml/100 g body mass) was administered through a catheter into stomach to suppress secretion of endogenous antidiuretic hormone (ADH). In experiments with water administration, diuresis increased due to a decrease of osmotic permeability of renal tubules and to excretion of osmotically free water, with the constant clearance of sodium ions. Injection of 0.05 µg arginine vasopressin led to a marked decrease of diuresis due to a rise of reabsorption of osmotically free water without elevation of excretion of osmotically active substances. Injection of the same dose of arginine vasotocin resulted in no increase of diuresis; however, reabsorption of osmotically free water and excretion of osmotically active substances including sodium ions were more pronounced. Hence, both vasotocin and vasopressin increased osmotic permeability of the tubular epithelium, but vasotocin, unlike vasopressin, promoted reduction of reabsorption of sodium ions and their loss with urine. A suggestion is made that one of the reasons for replacement in mammals of the molecular ADH forms (vasotocin by vasopressin) was the absence of the pronounced natriuretic effect in arginine vasopressin. This was of crucial significance to preserve sodium ions in the organism, to maintain water–salt balance in animals adapted to the terrestrial life, and to provide not only osmo-, but also volumoregulation.  相似文献   

6.
We compared parameters of water-salt balance in Wistar female rats fed normal chows during more than 2 weeks. Potassium content was 1.4-fold higher in diet I than in diet II, and sodium end water content was 3.3- and 7.5-fold higher in diet II than in diet I. Blood osmolality and concentration of Na+, K+, Mg2+ were equal in rats fed different chow. In water-loaded rats (5 ml of water/100 bw per os) fed different chow, urine flow rate did not differ, but solute-free water excretion was higher by 40.2% in the rats fed diet II vs. diet I. The sort of diet did not affect the renal sodium excretion during oral administration of 5 ml 0.9% NaCl per 100 g bw to rats. After vasopressin injection solute-free water reabsorption was 1.5-fold higher in rats fed diet II. Natriuretic and hydruretic effect of exenatide, glucagon-like peptide 1 mimetic, was weaker in rats fed diet I. The data obtained indicate that organism can effectively maintain blood parameters. The modulation of hormone regulatory effects on water and sodium balance was found to depend on the state of organism under diet consumed continuously.  相似文献   

7.
Three cases of compulsive polydipsia previously diagnosed as diabetes insipidus are presented. Abnormally dilated bladder and pyelocalyceal systems were accompanying features, as previously described for diabetes insipidus, particularly of renal orign. Results of the hypertonic saline (Hickey-Hare) test were positive in only one case. Results of restriction of liquids followed by intravenous injection of vasopressin (Miller test) favoured a diagnosis of complete diabetes insipidus. These two tests cannot, therefore, exclude compulsive polydipsia. The features suggesting a diagnosis of compulsive water drinking are low plasma osmolality, a decrease in 24-hour urine output following water restriction, and abnormal behaviour. The diagnosis is confirmed by an 18-hour dehydration test done after gradual fluid restriction, which favours partial restoration of the papillary osmotic gradient.  相似文献   

8.
High-altitude exposure changes the distribution of body water and electrolytes. Arginine vasopressin (AVP) may influence these alterations. The purpose of this study was to examine the effect of a 24-h water deprivation trial (WDT) on AVP release after differing altitude exposures. Seven healthy males (age 22 +/- 1 yr, height 176 +/- 2 cm, mass 75.3 +/- 1.8 kg) completed three WDTs: at sea level (SL), after acute altitude exposure (2 days) to 4,300 m (AA), and after prolonged altitude exposure (20 days) to 4,300 m (PA). Body mass, standing and supine blood pressures, plasma osmolality (Posm), and plasma AVP (PAVP) were measured at 0, 12, 16, and 24 h of each WDT. Urine volume was measured at each void throughout testing. Baseline Posm increased from SL to altitude (SL 291.7 +/- 0.8 mosmol/kgH2O, AA 299.6 +/- 2.2 mosmol/kgH2O, PA 302.3 +/- 1.5 mosmol/kgH2O, P < 0.05); however, baseline PAVP measurements were similar. Despite similar Posm values, the maximal PAVP response during the WDT (at 16 h) was greater at altitude than at SL (SL 1.7 +/- 0.5 pg/ml, AA 6.4 +/- 0.7 pg/ml, PA 8.7 +/- 0.9 pg/ml, P < 0.05). In conclusion, hypoxia appeared to alter AVP regulation by raising the osmotic threshold and increasing AVP responsiveness above that threshold.  相似文献   

9.
Alex J. Baertschi  Yves Massy  Smi Kwon   《Peptides》1985,6(6):1131-1135
To determine the relative importance of central and peripheral osmoreceptors in the osmotically-induced vasopressin secretion, osmosensitive areas of pentobarbital-anaesthetized rats were exposed for 5 sec to an osmotic pulse (130 μmoles NaCl in 200 μl). The hepatic portal receptors were stimulated by superfusion of the portal vein, and the central receptors by infusion into one common carotid artery. Portal stimulation was 2.14±0.25 (mean±SEM, 4 groups of 5 rats) more effective than central osmotic pulse stimulation in elevating, within 1 minute, the plasma vasopressin level (measured by RIA). The central stimulus was not effective when introduced into the freely perfused vessel, although the hypothalamic extracellular NaCl concentration rose transiently (6 sec) to 2.6±0.3 w/v% (mean±SEM, n=6 rats). The results show that brief osmotic pulses preferentially stimulate portal osmoreceptors to cause the release of vasopressin, and suggest that portal osmoreceptors may be involved in the dynamic regulation of plasma osmolality.  相似文献   

10.
Systemic regulation of osmotic and ionic homeostasis was studied in healthy male volunteers after oral administration of desmopressin. Endogenous secretion of the antidiuretic hormone was inhibited by a water load (WL, 2% of the body mass). Desmopressin exerted an antidiuretic effect. In addition, the WL portion excreted during 4 h decreased and the urine osmolality at peak diuresis increased with the absence of osmotically free water. At maximum diuresis, the ratio between concentrations of osmotically active substances in the urine and in the blood was high, which reflected an intense antidiuretic effect. Desmopressin progressively decreased the rate of sodium excretion owing to a change of sodium reabsorption in the kidneys. The WL increased the level of aldosterone and the activity of renin in blood plasma 1.5 h after its administration. Contrary to the control series, desmopressin stimulated the renin-angiotensin-aldosterone system only by the end of the 4-h observation period. A significant negative correlation between the aldosterone level and the rate of sodium excretion was observed 3 h after the beginning of testing (r = ?0.76). Thus, under conditions of water loading, desmopressin had a specific antidiuretic effect involving systemic mechanisms of ion regulation.  相似文献   

11.
Ten normal males rested sitting upright at an air temperature of 28 degrees C for 5.5 h (control, C) and underwent 4 h of graded water immersion (WI) to the umbilicus (UI), to the chest (CI), and to the neck (NI), respectively (water temperature = 34.5 degrees C), on different experimental days. Plasma arginine vasopressin (PAVP) was suppressed during WI compared with C and maximally so during NI. However, there was no change in PAVP comparing CI with UI even though central venous pressure (CVP) increased. CVP increased during CI and NI compared with C but was unchanged during UI, whereas cardiac output (rebreathing method), stroke volume, and plasma volume increased to approximately the same level during all three steps of WI compared with C. Heart rate and total peripheral vascular resistance decreased during UI, CI, and NI. Systolic arterial pressure (SAP) and pulse pressure (PP) were increased gradually from prestudy related to the degree of WI. Also diuresis, natriuresis, kaliuresis, osmotic excretion, and clearance were increased gradually compared with C, whereas free water clearance (CH2O) gradually decreased. There were weak negative but statistically significant correlations between PAVP and CVP and between changes in PAVP from prestudy and corresponding changes in SAP and PP. Furthermore, a statistically significant and negative correlation between CH2O and natriuresis could be established. We conclude that graded immersion gradually increases central blood volume and decreases PAVP. However, not only cardiopulmonary mechanoreceptors but also arterial baroreceptors may play a role in AVP suppression during WI in humans. In hydropenic subjects the suppression of PAVP during WI is apparently not effective in counteracting the decrease in CH2O induced by increased solute excretion.  相似文献   

12.
To evaluate the role of chloride in the pathogenesis of salt-dependent deoxycorticosterone (DOC) hypertension, we studied young Wistar rats chronically loaded with sodium bicarbonate (NaHCO(3)) or sodium chloride (NaCl) which were administered either in the diet or in the drinking fluid. Selective sodium loading (without chloride) increased blood pressure (BP) in DOC-treated animals only if NaHCO(3) was provided in the diet. In contrast, no significant blood pressure changes were induced by DOC treatment in rats drinking NaHCO(3) solution. Hypernatremia and high plasma osmolality occurred only in rats drinking NaCl or NaHCO(3) solutions. Compared to great volume expansion in NaCl-loaded DOC-treated rats, the degree of extracellular fluid volume expansion (namely of its interstitial fraction) was substantially lower in both NaHCO(3)-loaded groups in which significant hypokalemia was observed. NaHCO(3)-drinking rats without significant blood pressure response to DOC treatment represented the only experimental group in which blood volume was not expanded. In conclusion, our data confirm previous observations that NaHCO(3) loading is less potent in eliciting DOC hypertension than NaCl loading, but blood pressure rise in rats fed NaHCO(3) diet clearly demonstrated that selective sodium loading could potentiate the development of DOC hypertension if NaHCO(3) is offered within the appropriate dietary regimen. The reasons for the failure of NaHCO(3)-drinking rats to elevate blood pressure in response to chronic mineralocorticoid treatment are not obvious. However, the absence of a significant plasma volume expansion together with hypernatremia and increased plasma osmolality suggest a considerable degree of dehydration in these animals which fail to increase their fluid consumption compared to water drinking rats.  相似文献   

13.
The lateral hypothalamus has an important role in regulating food and water intake. We have investigated the endogenous release of monoamines from the lateral hypothalamus during manipulations of plasma osmolality and circulating volume. Adult male Sprague-Dawley rats implanted with carbon paste in vivo electrochemical (EC) electrodes in the lateral hypothalamus were placed on a 72-h water deprivation schedule. Although the carbon paste EC electrode has an intrinsically ambiguous signal in which changes in ascorbic acid may appear as changes in catechol concentrations, pharmacologic studies in lateral hypothalamus indicated that the electrode most likely measured norepinephrine and possibly epinephrine. On the test day, the EC electrodes were scanned with linear sweep voltammetry from -0.2 to +0.4 V at a rate of 5 mV/s. Semiderivative signal processing showed catechol and hydroxyindole peaks at +0.11 and +0.23 V, respectively. Baseline recordings were made prior to rats drinking distilled water, 10% sucrose, 5% dextrose, 0.30% NaCl, 0.90% NaCl, or 10% d-mannitol. To control for the act of drinking, other implanted dehydrated rats were intraperitoneally injected with 5% dextrose, 0.30% NaCl, or 0.90% NaCl. To dissociate the effects of osmolality and circulating volume on the EC response, hydrated rats implanted with EC electrodes were subcutaneously injected with 12% NaCl or intraperitoneally injected with 35% polyethylene glycol. Other rats subjected to water deprivation and osmotic challenges were decapitated and trunk blood was collected for measurements of plasma osmolality and hematocrit. Similar experiments were conducted using homozygous Brattleboro rats which lack arginine vasopressin (AVP) but which preserve normal plasma osmolality with prodigious drinking.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Impaired osmotic sensation in mice lacking TRPV4   总被引:6,自引:0,他引:6  
The Ca2+-permeable cation channel TRPV4, which is part of the Trp family located in the circumventricular organs, is activated by cell swelling. To investigate the role of TRPV4 in osmotic sensation, we disrupted the TRPV4 gene in mice and examined the effect on osmotic metabolism. Disruption of the mouse TRPV4 gene did not influence either water intake behavior or serum osmolality. Short-term salt ingestion, however, seemed to impair the transient free water clearance. The level of serum arginine vasopressin (AVP) of TRPV4–/– mice was not significantly changed under normal conditions but was significantly increased under stimulated conditions. Incubation of brain slices with graded hyperosmolality suggested an exaggerated response of AVP secretion in TRPV4–/– mice. Thus TRPV4 in the brain may transmit a negative signal to AVP secretion similar to an inhibitory pass through the baroregulatory system. Thus, in the regulation of serum osmolality, TRPV4 is a swell-activated channel that appears to play a role in reversion toward hyposmolality. Trp; calcium channel; vasopressin; mechanosensitive channel  相似文献   

15.
Neurons of the organum vasculosum of the lamina terminalis (OVLT) are necessary for thirst and vasopressin secretion during hypersmolality in rodents. Recent evidence suggests the osmosensitivity of these neurons is mediated by a gene product encoding the transient receptor potential vanilloid-1 (TRPV1) channel. The purpose of the present study was to determine whether mice lacking the TRPV1 channel had blunted thirst responses and central Fos activation to acute and chronic hyperosmotic stimuli. Surprisingly, TRPV1-/- vs. wild-type mice ingested similar amounts of water after injection (0.5 ml sc) of 0.5 M NaCl and 1.0 M NaCl. Chronic increases in plasma osmolality produced by overnight water deprivation or sole access to a 2% NaCl solution for 48 h produced similar increases in water intake between wild-type and TRPV1-/- mice. There were no differences in cumulative water intakes in response to hypovolemia or isoproterenol. In addition, the number of Fos-positive cells along the lamina terminalis, including the OVLT, as well as the supraoptic nucleus and hypothalamic paraventricular nucleus, was similar between wild-type and TRPV1-/- mice after both acute and chronic osmotic stimulation. These findings indicate that TRPV1 channels are not necessary for osmotically driven thirst or central Fos activation, and thereby suggest that TRPV1 channels are not the primary ion channels that permit the brain to detect changes in plasma sodium concentration or osmolality.  相似文献   

16.
The pituitary neural lobe of homozygous Brattleboro rats has high rates of glucose utilization not affected by chronic treatment with exogenous vasopressin, despite attenuation of polydipsia and polyuria. We evaluated whether this effect may result from the inability of vasopressin to affect the hypothalamo-neurohypophysial metabolism or from the development of resistance to chronic vasopressin treatment. We used the [14C]deoxyglucose method to compare 28-h effects of vasopressin treatment (5 U/kg, i.m., twice a day) with that of desmopressin (100 micrograms/kg, i.p., once a day), a long-lasting antidiuretic hormone, on glucose utilization of the hypothalamo-neurohypophysial system and related structures in conscious homozygous Brattleboro rats. Vasopressin and desmopressin reduced water intake, plasma osmolality and plasma Na+ concentration similarly. Vasopressin decreased glucose utilization in the supraoptic nucleus, subfornical organ and median preoptic nucleus, but did not alter activity in the paraventricular nucleus and neural lobe. Desmopressin decreased glucose utilization in all these structures. The results indicate that desmopressin has a more potent inhibitory action on the hypothalamo-neurohypophysial system than vasopressin over this short duration of treatment. The lack of response in the neural lobe from chronic treatment with vasopressin seems to be due to its inability to affect the paraventricular nucleus metabolism. The maintenance of metabolic activity in the paraventricular nucleus of vasopressin-treated Brattleboro rats suggests that this structure contributes importantly to the metabolism of neural lobe.  相似文献   

17.
Osmotically inactive skin Na(+) storage is characterized by Na(+) accumulation without water accumulation in the skin. Negatively charged glycosaminoglycans (GAGs) may be important in skin Na(+) storage. We investigated changes in skin GAG content and key enzymes of GAG chain polymerization during osmotically inactive skin Na(+) storage. Female Sprague-Dawley rats were fed a 0.1% or 8% NaCl diet for 8 wk. Skin GAG content was measured by Western blot analysis. mRNA content of key dermatan sulfate polymerization enzymes was measured by real-time PCR. The Na(+) concentration in skin was determined by dry ashing. Skin Na(+) concentration during osmotically inactive Na(+) storage was 180-190 mmol/l. Increasing skin Na(+) coincided with increasing GAG content in cartilage and skin. Dietary NaCl loading coincided with increased chondroitin synthase mRNA content in the skin, whereas xylosyl transferase, biglycan, and decorin content were unchanged. We conclude that osmotically inactive skin Na(+) storage is an active process characterized by an increased GAG content in the reservoir tissue. Inhibition or disinhibition of GAG chain polymerization may regulate osmotically inactive Na(+) storage.  相似文献   

18.
Rats with mammillary electrolytic lesions show a strong polydipsia and polyuria. This over-consumption may be primary or secondary to the polyuric effect. In this regard, mammillary lesioned rats excrete a greater amount of urine compared with control animals when matched in daily water consumption (partial water deprivation). Moreover, this abnormal water intake is significantly reversed by treatment with Pitressin, a vasopressin analogue. These results suggest that the polydipsia may be determined by the urinary water loss. However, when subjected to the bilateral ureter ligation, the experimental animals still outdrink the control ones, thus also suggesting a primary component of the polydipsia under study. The possible explanation of these components in relation to the mammillary polydipsia is discussed.  相似文献   

19.
H Rigter  J C Crabbe 《Peptides》1985,6(4):669-676
Preference for concentrations of ethanol between 2.2 and 10 percent versus tap water was studied in Brattleboro rats homozygous for diabetes insipidus (di/di), heterozygous (di/+) or normal (+/+). The di/di rats, totally lacking in vasopressin, had greatly reduced preference scores for all concentrations of ethanol. Their intake of ethanol (g/day) was higher than heterozygotes or normals, but only when 2.2 percent ethanol was offered as a choice. Administration of lysine vasopressin or the vasopressin fragment des-9-Glycinamide-[Arginine8] vasopressin (DGAVP) using osmotic minipumps enhanced ethanol preference scores, reduced ethanol (g/day) intake, and restored total daily fluid intake in di/di rats. When di/di and di/+ rats were first allowed to develop stable ethanol preference before treatment with DGAVP, the peptide had no effect on preference scores. Thus, no treatment was effective in dissociating polydipsia from reduced ethanol preference and increased ethanol intake. While these results cannot exclude a possible regulatory role for endogenous vasopressin in ethanol preference drinking, they more strongly suggest that reduced preference for ethanol and increased ethanol intake are epiphenomena secondary to a polydipsic state.  相似文献   

20.
Implication of the brain atrial natriuretic polypeptide on the vasopressin release was investigated using rats fed with a high-sodium containing diet. Sodium loading increased not only the blood pressure but also the urinary output of vasopressin significantly. The plasma vasopressin concentration increased about 10 times after the intracerebroventricular injections of angiotensin II. Thereby, magnitude of the response was significantly smaller in the rat fed with a high sodium diet than in rats with the regular-diet. The hypothalamic content of both vasopressin and atrial natriuretic polypeptide was significantly larger in the high-salt group than the regular-salt. The intraventricular injections of atrial natriuretic polypeptide abolished the vasopressin release induced by the intraventricular injections of angiotensin II. These results indicate that the vasopressin production in the hypothalamus is increased, but the release is relatively suppressed in the sodium-loaded rats, and that increased hypothalamic atrial natriuretic polypeptide is involved in the suppression of the vasopressin release and in decreasing their sodium appetite to avoid the high sodium environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号