首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Neurodegenerative diseases are characterized by a relentless loss of specific groups of neuronal subtypes. Many of these diseases share similar molecular mechanisms and extracellular mediators of neuronal loss. We now suggest that neurodegeneration originating in the neuronal cell bodies (e.g. in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) should be distinguished from that originating in the axons (e.g. in glaucoma, certain peripheral neuropathies and spinal stenosis). We propose that the former group of diseases be defined as 'somagenic' and the latter as 'axogenic'. Although axogenic disorders may share common symptoms and mediators of toxicity with somagenic disorders, they have distinct temporal, subcellular and signal-transduction features. We further suggest that, by adopting this classification of disorders based on pathophysiological processes, we will come to recognize additional diseases (in particular, those defined as axogenic) as being neurodegenerative and therefore possibly amenable to neuroprotective therapy.  相似文献   

4.
5.
6.
A number of human diseases have been attributed to defects in oxidative phosphorylation (OXPHOS) resulting from mutations in the mitochondrial DNA (mtDNA). One such disease is Leber's hereditary optic neuropathy (LHON), a neurodegenerative disease of young adults that results in blindness due to atrophy of the optic nerve. The etiology of LHON is genetically heterogeneous and in some cases multifactorial. Eleven mtDNA mutations have been associated with LHON, all of which are missense mutations in the subunit genes for the subunits of the electron transport chain complexes I, III, and IV. Molecular, biochemical, and population genetic studies have categorized these mutations as high risk (class I), low risk (class II), or intermediate risk (class I/II). Class I mutations appear to be primary genetic causes of LHON, while class II mutations are frequently found associated with class I genotypes and may serve as exacerbating genetic factors. Different LHON pedigrees can harbor different combinations of class I, II, or I/II mtDNA mutations, as shown by the complete sequence analysis of the mtDNAs of four LHON probands. The various mtDNA genotypes included an isolated class I mutation, combined class I+II mutations, and combined class I/II+II mutations. The occurrence of such genotypes supports the hypothesis that LHON may result from the additive effects of various genetic and environmental insults to OXPHOS, each of which increases the probability of blindness.  相似文献   

7.
8.
Human neurodegenerative illnesses such as Alzheimer's disease and Creutzfeldt-Jakob disease exact an enormous cost on individuals, families and society. For these and related disorders, current treatment is largely symptomatic without influencing the underlying disease process. Until recently, the development of immunotherapeutic approaches to neurodegenerative disorders had been almost completely ignored despite growing successes against other non-infectious diseases such as cancer. However, since Schenk and colleagues described the antibody-mediated clearance of amyloid plaques in a transgenic mouse model of Alzheimer's disease, a number of studies have confirmed the feasibility of this strategy for several neurodegenerative disorders including Huntington's disease and prion diseases. These reports offer the exciting prospect that either the immune system or its derivative components can be harnessed to fight the misfolded and/or aggregated proteins that accumulate in many neurodegenerative illnesses. If the remarkable power of clonal expansion, specificity and efficiency of the immune system can successfully inactivate these abnormal proteins, real hope exists that effective immunotherapeutic treatments for neurodegenerative illnesses may be available in the near future.  相似文献   

9.
Brains of hibernating mammals are protected against a variety of insults that are detrimental to humans and other nonhibernating species. Such protection is associated with a number of physiological adaptations including hypothermia, increased antioxidant defense, metabolic arrest, leukocytopenia, immunosuppression, and hypocoagulation. It is intriguing that similar manipulations provide considerable protection as experimental treatments for central nervous system injury. This review focuses on neuroprotective mechanisms employed during hibernation that may offer novel approaches in the treatment of stroke, traumatic brain injury, and neurodegenerative diseases in humans.  相似文献   

10.
Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.  相似文献   

11.
The accumulation of the amyloid-beta peptide, the main constituent of the "amyloid plaque", is widely considered to be the key pathological event in Alzheimer's disease. Amyloid-beta is produced from the amyloid precursor protein through the action of the proteases beta-secretase and gamma-secretase. Alternative cleavage of amyloid precursor protein by the enzyme alpha-secretase precludes amyloid-beta production. In addition, several proteases are involved in the degradation of amyloid-beta. This review focuses on the proteolytic mechanisms of amyloid-beta metabolism. An increasingly detailed understanding of proteolysis in both amyloid-beta deposition and clearance has identified some of these proteases as potential therapeutic targets for Alzheimer's disease. A more complex knowledge of these proteases takes us one step closer to developing "disease-modifying" therapies, but these advances also emphasize that significant challenges must be overcome before clinically effective drugs to treat Alzheimer's disease become a reality.  相似文献   

12.
13.
Protein glycation is initiated by a nucleophilic addition reaction between the free amino group from a protein, lipid or nucleic acid and the carbonyl group of a reducing sugar. This reaction forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or Amadori products. The Amadori products undergo dehydration and rearrangements and develop a cross-link between adjacent proteins, giving rise to protein aggregation or advanced glycation end products (AGEs). A number of studies have shown that glycation induces the formation of the β-sheet structure in β-amyloid protein, α-synuclein, transthyretin (TTR), copper-zinc superoxide dismutase 1 (Cu, Zn-SOD-1), and prion protein. Aggregation of the β-sheet structure in each case creates fibrillar structures, respectively causing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, familial amyloid polyneuropathy, and prion disease. It has been suggested that oligomeric species of glycated α-synuclein and prion are more toxic than fibrils. This review focuses on the pathway of AGE formation, the synthesis of different types of AGE, and the molecular mechanisms by which glycation causes various types of neurodegenerative disease. It discusses several new therapeutic approaches that have been applied to treat these devastating disorders, including the use of various synthetic and naturally occurring inhibitors. Modulation of the AGE-RAGE axis is now considered promising in the prevention of neurodegenerative diseases. Additionally, the review covers several defense enzymes and proteins in the human body that are important anti-glycating systems acting to prevent the development of neurodegenerative diseases.  相似文献   

14.
In Parkinson's disease (PD) and incidental Lewy body disease glutathione levels in the substantia nigra are decreased by 40-50%. Both peroxynitrite (ONOO ) and alterations in the metabolism of sulfur-containing amino acids have been implicated in PD and we have previously shown that sulfite and ONOO- exert synergistic toxicity to a neuronal cell line. This article presents data to show that this synergistic toxicity of sulfite and ONOO- is greatly enhanced by 50% depletion of cellular glutathione levels. The toxicity of sulfite is also slightly enhanced. Neurones with decreased glutathione may be at increased risk from sulfite and especially from the synergistic damaging effects of ONOO- and sulfite. Because sulfite is present normally in the brain as a product of cysteine metabolism, and because increased ONOO- formation has been reported in PD, these events might contribute to neuronal cell death.  相似文献   

15.
LINCL (late-infantile neuronal ceroid lipofuscinosis) is a fatal neurodegenerative disease resulting from mutations in the gene encoding the lysosomal protease TPPI (tripeptidyl-peptidase I). TPPI is expressed ubiquitously throughout the body but disease appears restricted to the brain. One explanation for the absence of peripheral pathology is that in tissues other than brain, other proteases may compensate for the loss of TPPI. One such candidate is another lysosomal aminopeptidase, DPPI (dipeptidyl-peptidase I), which appears to have overlapping substrate specificity with TPPI and is expressed at relatively low levels in brain. Compensation for the loss of TPPI by DPPI may have therapeutic implications for LINCL and, in the present study, we have investigated this possibility using mouse genetic models. Our rationale was that if DPPI could compensate for the loss of TPPI in peripheral tissues, then its absence should exacerbate disease in an LINCL mouse model but, conversely, increased CNS (central nervous system) expression of DPPI should ameliorate disease. By comparing TPPI and DPPI single mutants with a double mutant lacking both proteases, we found that the loss of DPPI had no effect on accumulation of storage material, disease severity or lifespan of the LINCL mouse. Transgenic expression of DPPI resulted in a approximately 2-fold increase in DPPI activity in the brain, but this had no significant effect on survival of the LINCL mouse. These results together indicate that DPPI cannot functionally compensate for the loss of TPPI. Therapeutic approaches to increase neuronal expression of DPPI are therefore unlikely to be effective for treatment of LINCL.  相似文献   

16.
Mutations in the gene that encodes the lysosomal enzyme acid β-glucosidase lead to reduced cellular activity and accumulation of glycosphingolipid substrates, biochemical hallmarks of the lysosomal storage disorder Gaucher disease (GD). Recently such mutations have been identified as risk factors for Parkinson’s disease (PD) and related disorders. Both gain-of-function (due to toxic cellular accumulation of mutant enzyme) and loss-of-function (due to accumulation of lipid substrates) hypotheses have been put forth to address the biochemical link between GD and PD. Similarly, links between Alzheimer’s disease and other lysosomal enzyme deficiencies have begun to emerge. The use of pharmacological chaperones to restore the cellular trafficking and activity of mutant lysosomal enzymes may offer a novel approach to treat these debilitating neurodegenerative diseases.  相似文献   

17.
Oxidative stress has been implicated in the degeneration of dopaminergic neurons in the substantia nigra (SN) of Parkinson's disease (PD) patients. An important biochemical feature of presymptomatic PD is a significant depletion of the thiol antioxidant glutathione (GSH) in these neurons resulting in oxidative stress, mitochondrial dysfunction, and ultimately cell death. We have earlier demonstrated that curcumin, a natural polyphenol obtained from turmeric, protects against peroxynitrite-mediated mitochondrial dysfunction both in vitro and in vivo. Here we report that treatment of dopaminergic neuronal cells and mice with curcumin restores depletion of GSH levels, protects against protein oxidation, and preserves mitochondrial complex I activity which normally is impaired due to GSH loss. Using systems biology and dynamic modeling we have explained the mechanism of curcumin action in a model of mitochondrial dysfunction linked to GSH metabolism that corroborates the major findings of our experimental work. These data suggest that curcumin has potential therapeutic value for neurodegenerative diseases involving GSH depletion-mediated oxidative stress.  相似文献   

18.
A number of neurodegenerative diseases are mediated by mutation-induced protein misfolding. The resulting genetic defects, however, are expressed in varying phenotypes. Of the several well-established glycolytic enzyme deficiencies, triosephosphate isomerase (TPI) deficiency is the only one in which haemolytic anaemia is coupled with progressive, severe neurological disorder. In a Hungarian family with severe decrease in TPI activity, two germ line-identical but phenotypically differing compound heterozygote brothers inherited two independent (Phe(240)-->Leu and Glu(145)-->stop codon) mutations. We have demonstrated recently [Orosz, Oláh, Alvarez, Keserü, Szabó, Wágner, Kovári, Horányi, Baróti, Martial, Hollán and Ovádi (2001) Blood 98, 3106-3112] that the mutations of TPI explain in themselves neither the severe decrease in the enzyme activity characteristic of TPI deficiency nor the enhanced ability of the mutant enzyme from haemolysate of the propositus to associate with subcellular particles. Here we present kinetic (flux analysis), thermodynamic (microcalorimetry and fluores cence spectroscopy), structural (in silico) and ultrastructural (immunoelectron microscopy) data for characterization of mutant isomerase structures and for the TPI-related metabolic processes in normal and deficient cells. The relationships between mutation-induced TPI misfolding and formation of aberrant protein aggregates are discussed.  相似文献   

19.
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.  相似文献   

20.
VEGF was discovered almost 25 years ago, and its angiogenic activity has been extensively studied ever since. Accumulating evidence indicates, however, that VEGF also has direct effects on neuronal cells. VEGF exerts neuroprotective effects on various cultured neurons of the central nervous system. In vivo, VEGF controls the correct migration of facial branchiomotor neurons in the developing hindbrain and stimulates the proliferation of neural stem cells in enriched environments and after cerebral ischemia. Transgenic mice expressing reduced levels of VEGF develop late-onset motor neuron degeneration, reminiscent of amyotrophic lateral sclerosis (ALS), whereas reduced levels of VEGF have been implicated in a polyglutamine-induced model of motor neuron degeneration. Recent data further reveal that intracerebroventricular delivery of recombinant VEGF protein delays disease onset and prolongs survival of ALS rats, whereas intramuscular administration of a VEGF-expressing lentiviral vector increases the life expectancy of ALS mice by as much as 30%. Deciphering the precise role of VEGF at the neurovascular interface promises to uncover new insights into the development and pathology of the nervous system, helpful to design novel strategies to treat (motor) neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号