首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel y-type high-molecular-weight glutenin subunit possessing a slightly faster mobility than that of subunit 1Dy12 in SDS-PAGE, designated 1Dy12.1t in Aegilops tauschi, was identified by one- and two-dimensional gel and capillary electrophoresis. Its coding gene at the Glu-D t 1 locus was amplified with allele-specific-PCR primers, and the amplified products were cloned and sequenced. The complete nucleotide sequence of 2,807 bp containing an open reading frame of 1,950 bp and 857 bp of upstream sequence was obtained. A perfectly conserved enhancer sequence and the –300 element were present at positions of 209–246 bp and 424–447 bp upstream of the ATG start codon, respectively. The deduced mature protein of 1 Dy12.1t subunit comprised 648 amino acid residues and had a Mr of 67,518 Da, which is slightly smaller than the 1Dy12 (68,695 Da) but larger than the 1Dy10 (67,495 Da) subunits of bread wheat, respectively, and corresponds well with their relative mobilities when separated by acid-PAGE. The deduced amino acid sequence indicated that the 1Dy12.1t subunit displayed a greater similarity to the 1Dy10 subunit, with only seven amino acid substitutions, suggesting that this novel gene could have positive effect on bread-making quality. A phenetic tree produced by nucleotide sequences showed that the x- and y-type subunit genes were respectively clustered together and that the Glu-D t 1y12.1 gene of Ae. tauschii is closely related to other y-type subunit genes from the B and D genomes of hexaploid bread wheat.Communicated by H.F. Linskens  相似文献   

2.
A novel y-type high molecular weight (HMW) glutenin subunit gene from the G genome of Triticum timopheevi (2n=4x=28, AAGG) was isolated and characterized. Genomic DNA from accession CWI17006 was amplified and a 2200 bp fragment was obtained. Sequence analysis revealed a complete open reading frame including N- and C-terminal ends and a central repetitive domain encoding 565 amino acid residues. The molecular weight of the deduced subunit was 77,031, close to that of the x-type glutenin subunits. Its mature protein structure, however, demonstrated that it was a typical y-type HMW subunit. To our knowledge, this is the largest y-type subunit gene among Triticum genomes. The molecular structure and phylogenetic analysis assigned it to the G genome and it is the first characterized y-type HMW glutenin subunit gene from T. timopheevi. Comparative analysis and secondary structure prediction showed that the subunit possessed some unique characters, especially 2 large insertions of 45 (6 hexapeptides and a nonapeptide) and 12 (2 hexapeptides) amino acid residues that mainly contributed to its higher molecular weight and allowed more coils to be formed in its tertiary structure. Additionally, more alpha-helixes in the repeat domain of the subunit were found when compared with 3 other y-type subunits. We speculate that these structural characteristics improve the formation of gluten polymer. The novel subunit, expressed as a fusion protein in E. coli, moved more slowly in SDS-PAGE than the subunit Bx7, so it was designated Gy7*. As indicated in previous studies, increased size and more numerous coils and alpha-helixes of the repetitive domain might enhance the functional properties of HMW glutenins. Consequently, the novel Gy7* gene could have greater potential for improving wheat quality.  相似文献   

3.
利用SDS-PAGE检测了2份类大麦属(Crithopsis delileana)材料的高分子量谷蛋白亚基组成,并对其中1份材料的x型亚基进行了克隆和测序。结果表明,2份材料具有完全相同的蛋白电泳图谱。在小麦的高分子量区域仅检测到一条蛋白质带,与小麦y型亚基的迁移率接近,但克隆测序表明其为x型高分子量谷蛋白亚基,其编码基因命名为Kx。Kx基因编码区序列长度为2052bp.编码长度为661个氨基酸残基的蛋白质,其序列具有典型的x型高分子量谷蛋白亚基的特征。Kx基因能在原核表达系统内正确表达,其表达蛋白与来源于种子中的Kx亚基的迁移率完全一致。Kx亚基与小麦属A、B和D,山羊草属C和U以及黑麦属R染色体组编码的高分子量谷蛋白亚基氨基酸序列非常相似,但在N和C保守区的氨基酸组成以及重复区长度上与它们存在明显差异。聚类分析可将Kx与Ax1聚类为平行的分支。由此可见,来源于C.delileana的Kx基因为一新的x型高分子量谷蛋白亚基基因。  相似文献   

4.
Genes (x-type) corresponding to different high-molecular-weight glutenin subunits encoded at the Glu-A1 locus present in bread- and durum-wheat cultivars have been selectively amplified by the polymerase chain reaction (PCR). DNA fragments corresponding to an unexpressed x-type gene were also amplified. As unexpressed y-type genes may or may not contain an 8-kb transposon-like insertion, two different sets of primers were designed to obtain amplification of DNA fragments corresponding to these genes. Amplified DNA fragments were also digested with restriction enzymes. The digestion patterns of amplified fragments corresponding to unusual x-type subunits showed similarities with genes encoding the most common subunits 2* and 1. The unexpressed amplified x-type gene showed a restriction pattern similar to the one obtained with the allelic gene encoding high-molecular-weight glutenin subunit 1; homologies were also found within the repetitive region of the linked y-type genes. On the basis of these observations it is postulated that an ancestral active x-type gene, most likely corresponding to subunit 1, was silenced following the insertion of the 8-kb transposon-like fragment into the linked y-type gene. Received: 8 April 1996 / Accepted: 30 August 1996  相似文献   

5.
Guo ZF  Yan ZH  Wang JR  Wei YM  Zheng YL 《Hereditas》2005,142(2005):56-64
The high-molecular-weight (HMW) prolamines subunits and their coding sequences from wheat-related diploid species Crithopsis delileana were investigated. Only one HMW prolamine subunit with the similar electrophoresis mobility to the y-type HMW glutenin subunit of hexaploid wheat was observed in two accessions of C. delileana by SDS-PAGE analyses of the total storage protein fractions. It was confirmed by sequencing and expression analysis that this prolamine subunit was an x-type subunit. The amino acid sequence of this subunit had the similar typical structure to those of x-type HMW glutenin genes previously described in wheat. An in-frame stop codon was found in the coding sequences of y-type prolamine subunits. It was found by specifically extraction of HMW prolamines and sequence analysis that the coding regions of Ky prolamine subunit gene is very likely to be not expressed as a full-length protein. Phylogenetic analysis indicated that the Kx subunit could be clustered together with 1Ax1 subunit by an interior paralleled branch, and Ky subunit (inactive) was most closely related to the 1Ay subunit. The coding sequences of Kx subunit could successfully be expressed in bacterial expression system, and the expressed protein had the same electrophoresis mobility as the Kx subunit from the seed of C. delileana. It was the first time that the HMW prolamines subunits encoded by K genome of C. delileana were characterized.  相似文献   

6.
Summary The nucleotide and deduced amino acid sequences of a high molecular weight glutenin subunit gene derived from chromosome 1B of bread wheat (Triticum aestivum L.) are reported. The encoded protein corresponds to the y-type subunit 1B9. Comparison of the 5 upstream untranslated regions of this gene and a previously reported silent y-type gene derived from chromosome 1A showed a deletion of 85 bp in the latter. A sequence present in this region of the 1By 9 gene shows homology with part of the -300 element which is conserved in the 5 upstream regions of other prolamin genes from barley, wheat and maize (Forde BG et al. 1985). It is suggested that the absence of this element is responsible for the lack of expression of the 1Ay gene. Comparison of the derived amino acid sequence with those reported previously for the silent 1Ay gene and the expressed x-type (1Dx2) and y-type (1Dy12) genes derived from chromosome 1D showed that the three y-type proteins are closely related. In contrast the x-type subunit (1Dx2) shows clear differences in the N-terminal region and in the number, type and organisation of repeats in the central repetitive domain.  相似文献   

7.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   

8.
Liu S  Zhu X  Tan Y  Liu S 《Gene》2012,499(1):154-159
The St genome, which is present in nearly half of all Triticeae species, originates from the genus Pseudoroegneria. However, very little is known about the high molecular weight (HMW) subunits of glutenin which are encoded by the St genome. In this paper, we report the isolation from Pd. libanotica of four sequences encoding HMW subunits of glutenin. The four genes were all small compared to standard glutenin genes. All four sequences resemble y-type glutenins rather than x-types. However, their N-terminal domains contain a glutamine residue which is present in all x-type, but very few y-type subunits, and their central repetitive domains included some irregular motifs. The indication is therefore that the Glu-1St genes evolved earlier than other modern day homoeologues, so that they represent an intermediate state in the divergence between x- and y-type subunits. No x-type Glu-1St subunit genes were identified.  相似文献   

9.
A detergent wash extracted soluble proteins from wheat flour, leaving a residue enriched with insoluble glutenin aggregates. Digestion of this residue with endoproteinase Lys-C, which showed a limited specificity for glutenin subunits, produced several peptides with apparent molecular weights close to those of intact high-molecular-weight glutenin subunits. N-terminal sequencing indicated that the isolated peptides were composed of high-molecular-weight glutenin subunit fragments joined by an intermolecular disulfide bond. In two of these peptides, only two components were found, one from an x-type subunit and the other from a y-type subunit. The isolated peptides all contained at least one x-type C-terminal region and one y-type N-terminal region, suggesting a specific orientation to the intermolecular disulfide linkage.  相似文献   

10.
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n = 4x = 28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.  相似文献   

11.
Wang K  An XL  Pan LP  Dong K  Gao LY  Wang SL  Xie ZZ  Zhang Z  Appels R  Ma W  Yan YM 《Hereditas》2012,149(1):41-49
Two x-type high molecular weight glutenin subunits (HMW-GS) in Aegilops tauschii, 1Dx3(t) and 1Dx4(t) were identified by SDS-PAGE and MALDI-TOF-MS. Their complete coding sequences were isolated by AS-PCR. 1Dx3(t) and 1Dx4(t) genes consist of 2535 bp and 2508 bp and encode 845 and 836 amino acid residues, respectively. The deduced molecular masses of 1Dx3(t) and 1Dx4(t) gene products are 87655.26 Da and 86664.24 Da, respectively, well corresponding to the molecular masses measured by MALDI-TOF-MS. A total of 18 SNPs were identified between 1Dx3(t) and 1Dx4(t). Comparing with 1Dx5 subunit, 1Dx3(t) had a six amino acid insertion at 146-151 while the 1Dx4(t) had a nine amino acid deletion when compared with 1Dx3(t) subunit. The authenticity of the cloned 1Dx3(t) and 1Dx4(t) genes were confirmed by successful expression of their ORFs in E. coli. Comparison and phylogenetic tree based on the amino acid and nucleotide sequences confirmed that 1Dx3(t) was most closely related to 1Dx5 subunit that is widely accepted as a superior subunit for bread-making property. The secondary structure prediction demonstrated that 1Dx3(t) subunit has significantly high α-helix and β-strand contents, suggesting it might have positive effects on dough quality.  相似文献   

12.
The Ns genome of the genus Psathyrostachys possesses superior traits useful for wheat improvement. However, very little is known about the high molecular weight (HMW) subunits of glutenin encoded by the Ns genome. In this paper, we report the isolation of four alleles of HMW glutenin subunit gene from Psathyrostachys juncea. Sequence alignment data shows the four alleles have similar primary structure with those in wheat and other wheat-related grasses, with some unique modifications. All four sequences more closely resemble y-type, rather than x-type, glutenins. However, our results show three of the subunits (1Ns2-4) contain an extra glutamine residue in the N-terminal region not found on typical y-type subunits, as well as the x-type subunit specific sequence LAAQLPAMCRL. These three subunits likely represent an intermediate state in the divergence between x- and y-type subunits. Results also indicate that the Ns genome is more closely related to the St genome of Pseudoroegneria than any other Triticeae genomes.  相似文献   

13.
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> − 700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5′-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.  相似文献   

14.
通过SDS-PAGE分析,从云南小麦中鉴定出一个电泳迁移率比高分子量麦谷蛋白亚基1Dy12稍快的亚基1Dy12*。利用Glu-Dy位点特异引物对1Dy12*基因编码区进行了克隆和序列测定。1Dy12*基因全长为1980bp,编码658个氨基酸。氨基酸序列比较结果表明:与亚基1Dy12相比有3个氨基酸的差异和1个二肽(GQ)的缺失,与亚基1Dy10相比有15个氨基酸的差异、2个六肽(IGQGQQ)的插入以及1个二肽(GQ)的缺失。这表明1Dy12*亚基是一个新型高分子麦谷蛋白亚基,其对小麦加工品质的影响正在评价中。  相似文献   

15.
Yang ZJ  Li GR  Shu HL  Liu C  Feng J  Chang ZJ  Ren ZL 《Hereditas》2006,143(2006):159-166
High molecular weight glutenin subunit (HMW-GS) 1Bx23, an x-type subset encoded by Glu-B1p, which is only distributed in Triticum turgidum, was successfully transferred from hexaploid triticale to common wheat line SY95-71. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) shows that subunit 1Bx23 has a faster mobility than subunit 1Bx7 and 1Bx20, but slower than 1Bx17. Primers designed from the conserved regions in wheat HMW-GS gene promoter and coding sequences were used to amplify the genomic DNA of SY95-71. Total nucleotide sequences of 3426 bp including an open reading frame of 2385 bp and upstream sequence of 1038 bp were obtained. Compared with the reported gene sequences of Glu-B1-1 alleles, including 1Bx7, 1Bx14, 1Bx20 and 1Bx17, the promoter region of the 1Bx23 was displayed close to 1Bx7 and 1Bx17. The deduced amino acid sequence of coding region of 1Bx23 exhibited 34, 30, 20 and 22 amino acid substitutions from that of 1Bx14, 1Bx20, 1Bx7 and 1Bx17, respectively. A phylogenetic tree based on the nucleotide sequence alignment of the Glu-1Bx alleles shows that the 1Bx23 are apparently clustered with 1Bx7 and 1Bx17, and more ancient than 1Bx14 and 1Bx20, suggesting that the evolution speeds are different among Glu-1Bx genes. Additionally, the potential use of wheat line SY95-71 to further screen the quality contribution of unique subunit 1Bx23 is also discussed.  相似文献   

16.
In this study, a novel y-type high molecular weight glutenin subunit (HMW-GS) in wild emmer wheat Triticum turgidum L. var. dicoccoides (K?rn.) accession KU1952 was identified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), capillary electrophoresis (CE) and matrix-assisted laser desorption ionisation/time-of-flight/mass spectrometry (MALDI-TOF-MS). Its electrophoretic mobility and molecular weight were similar to those of 1By16 and was designated as 1By16*. The complete coding sequence of the 1By16* gene isolated by allelic-specific polymerase chain reaction (AS-PCR) consists of 2,157 bp, encoding 729 amino acid residues. The real presence and authenticity of the 1By16* gene in KU1952 were further confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), heterologous expression and Western blotting. The molecular structure as well as phylogenetic analysis revealed that 1By16* had 21 single-nucleotide polymorphism (SNP) variations and possessed greater similarity with superior quality subunits 1By15 and 1By16 of common wheat. Secondary structure prediction displayed higher α-helix and β-strand contents in the 1By16* subunit, which could form a superior gluten structure and, consequently, might have positive effects on dough quality. Our results suggest that 1By16* is expected to be a new potential gene for wheat quality improvement.  相似文献   

17.
Bread wheat quality is mainly correlated with high molecular weight glutenin subunits (HMW-GS) of endosperm. The number of HMW-GS alleles with good processing quality is limited in bread wheat cultivars, while there are plenty of HMW-GS alleles in wheat-related grasses to exploit. We report here on the cloning and characterization of HMW-GS alleles from the decaploid Agropyron elongatum. Eleven novel HMW-GS alleles were cloned from the grass. Of them, five are x-type and six y-type glutenin subunit genes. Three alleles Aex4, Aey7, and Aey9 showed high similarity with another three alleles from the diploid Lophopyrum elongatum, which provided direct evidence for the Ee genome origination of A. elongatum. It was noted that C-terminal regions of three alleles of the y-type genes Aey8, Aey9, and Aey10 showed more similarity with x-type genes than with other y-type genes. This demonstrates that there is a kind of intermediate state that appeared in the divergence between x- and y-type genes in the HMW-GS evolution. One x-type subunit, Aex4, with an additional cysteine residue, was speculated to be correlated with the good processing quality of wheat introgression lines. Aey4 was deduced to be a chimeric gene from the recombination between another two genes. How the HMW-GS genes of A. elongatum may contribute to the improvement of wheat processing quality are discussed.  相似文献   

18.
邓志勇  张相岐 《遗传》2004,26(3):325-329
通过PCR克隆的方法,获得了分别来自二倍体长穗偃麦草的E基因组和四倍体长穗偃麦草的E_1基因组的4个高分子量麦谷蛋白亚基(HMW-GS)基因启动子的部分序列。序列分析表明,它们之间的同源性较高,两个x型亚基启动子序列之间只有1个碱基的差异,而两个y型亚基启动子序列完全相同,x和y型亚基启动子序列之间的长度和部分碱基位点都有差异。推测四倍体长穗偃麦草中的E_1基因组可能起源于二倍体的E基因组。与来自小麦族的A、B、D和G基因组部分亚基基因的启动子序列比较表明,小麦族的这一区域在进化上是相当保守的,不同基因组来源的序列同源性都在90%以上。经过对这些序列的聚类分析,表明长穗偃麦草的y型HMW-GS基因与其他亚基基因的进化关系较远,而x型亚基基因与一个来自小麦1B染色体的亚基基因关系最近。  相似文献   

19.
 The high-molecular-weight glutenin (HMW) genes and encoded subunits are known to be critical for wheat quality characteristics and are among the best-studied cereal research subjects. Two lines of experiments were undertaken to further understand the structure and high expression levels of the HMW-glutenin gene promoters. Cross hybridizations of clones of the paralogous x-type and y-type HMW-glutenin genes to a complete set of six genes from a single cultivar showed that each type hybridizes best within that type. The extent of hybridization was relatively restricted to the coding and immediate flanking DNA sequences. Additional DNA sequences were determined for four published members of the HMW-glutenin gene family (encoding subunits Ax2*, Bx7, Dx5, and Dy10) and showed that the flanking DNA of the examined genes diverge at approximately −1200 bp 5′ to the start codon and 200–400 bp 3′ to the stop codon. These divergence sites may indicate the boundaries of sequences important in gene expression. In addition, promoter sequences were determined for alleles of the Bx gene (Glu-B1-1), a gene reported to show higher levels of expression than other HMW-glutenin genes and with variation among cultivars. The sequences of Bx promoters from three cultivars and one wild tetraploid wheat indicated that all Bx alleles had few differences and contained a duplicated portion of the promoter sequence “cereal-box” previously suspected as a factor in higher levels of expression. Thus, the “cereal-box” duplication preceeded the origin of hexaploid wheat, and provides no evidence to explain the variations in Bx subunit synthesis levels. One active Bx allele contained a 185-bp insertion that evidently resulted from a transposition event. Received: 5 August 1997 / Accepted: 6 November 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号