首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Organisms are constantly exposed to various environmental insults which could adversely affect the stability of their genome. To protect their genomes against the harmful effect of these environmental insults, organisms have evolved highly diverse and efficient repair mechanisms. Defective DNA repair processes can lead to various kinds of chromosomal and developmental abnormalities. RecQ helicases are a family of evolutionarily conserved, DNA unwinding proteins which are actively engaged in various DNA metabolic processes, telomere maintenance and genome stability. Bacteria and lower eukaryotes, like yeast, have only one RecQ homolog, whereas higher eukaryotes including humans possess multiple RecQ helicases. These multiple RecQ helicases have redundant and/or non-redundant functions depending on the types of DNA damage and DNA repair pathways. Humans have five different RecQ helicases and defects in three of them cause autosomal recessive diseases leading to various kinds of cancer predisposition and/or aging phenotypes. Emerging evidence also suggests that the RecQ helicases have important roles in telomere maintenance. This review mainly focuses on recent knowledge about the roles of RecQ helicases in DNA double strand break repair and telomere maintenance which are important in preserving genome integrity.  相似文献   

3.
Understanding the molecular and cellular functions of RecQ helicases has attracted considerable interest since several human diseases characterized by premature aging and/or cancer have been genetically linked to mutations in genes of the RecQ family. Although a human disease has not yet been genetically linked to a mutation in RECQ1, the prominent roles of RecQ helicases in the maintenance of genome stability suggest that RECQ1 helicase is likely to be important in vivo.To acquire a better understanding of RECQ1 cellular and molecular functions, we have investigated its protein interactions. Using a co-immunoprecipitation approach, we have identified several DNA repair factors that are associated with RECQ1 in vivo. Direct physical interaction of these repair factors with RECQ1 was confirmed with purified recombinant proteins. Importantly, RECQ1 stimulates the incision activity of human exonuclease 1 and the mismatch repair recognition complex MSH2/6 stimulates RECQ1 helicase activity. These protein interactions suggest a role of RECQ1 in a pathway involving mismatch repair factors. Regulation of genetic recombination, a proposed role for RecQ helicases, is supported by the identified RECQ1 protein interactions and is discussed.  相似文献   

4.
RecQ helicases play an important role in preserving genomic integrity, and their cellular roles in DNA repair, recombination, and replication have been of considerable interest. Of the five human RecQ helicases identified, three are associated with genetic disorders characterized by an elevated incidence of cancer or premature aging: Werner syndrome, Bloom syndrome, and Rothmund-Thomson syndrome. Although the biochemical properties and protein interactions of the WRN and BLM helicases defective in Werner syndrome and Bloom syndrome, respectively, have been extensively investigated, less information is available concerning the functions of the other human RecQ helicases. We have focused our attention on human RECQ1, a DNA helicase whose cellular functions remain largely uncharacterized. In this work, we have characterized the DNA substrate specificity and optimal cofactor requirements for efficient RECQ1-catalyzed DNA unwinding and determined that RECQ1 has certain properties that are distinct from those of other RecQ helicases. RECQ1 stably bound to a variety of DNA structures, enabling it to unwind a diverse set of DNA substrates. In addition to its DNA binding and helicase activities, RECQ1 catalyzed efficient strand annealing between complementary single-stranded DNA molecules. The ability of RECQ1 to promote strand annealing was modulated by ATP binding, which induced a conformational change in the protein. The enzymatic properties of the RECQ1 helicase and strand annealing activities are discussed in the context of proposed cellular DNA metabolic pathways that are important in the maintenance of genomic stability.  相似文献   

5.
BACKGROUND: The HRDC (helicase and RNaseD C-terminal) domain is found at the C terminus of many RecQ helicases, including the human Werner and Bloom syndrome proteins. RecQ helicases have been shown to unwind DNA in an ATP-dependent manner. However, the specific functional roles of these proteins in DNA recombination and replication are not known. An HRDC domain exists in both of the human RecQ homologues that are implicated in human disease and may have an important role in their function. RESULTS: We have determined the three-dimensional structure of the HRDC domain in the Saccharomyces cerevisiae RecQ helicase Sgs1p by nuclear magnetic resonance (NMR) spectroscopy. The structure resembles auxiliary domains in bacterial DNA helicases and other proteins that interact with nucleic acids. We show that a positively charged region on the surface of the Sgs1p HRDC domain can interact with DNA. Structural similarities to bacterial DNA helicases suggest that the HRDC domain functions as an auxiliary domain in RecQ helicases. Homology models of the Werner and Bloom HRDC domains show different surface properties when compared with Sgs1p. CONCLUSIONS: The HRDC domain represents a structural scaffold that resembles auxiliary domains in proteins that are involved in nucleic acid metabolism. In Sgs1p, the HRDC domain could modulate the helicase function via auxiliary contacts to DNA. However, in the Werner and Bloom syndrome helicases the HRDC domain may have a role in their functional differences by mediating diverse molecular interactions.  相似文献   

6.
RecQ DNA helicases are critical components of DNA replication, recombination, and repair machinery in all eukaryotes and bacteria. Eukaryotic RecQ helicases are known to associate with numerous genome maintenance proteins that modulate their cellular functions, but there is little information regarding protein complexes involving the prototypical bacterial RecQ proteins. Here we use an affinity purification scheme to identify three heterologous proteins that associate with Escherichia coli RecQ: SSB (single-stranded DNA-binding protein), exonuclease I, and RecJ exonuclease. The RecQ-SSB interaction is direct and is mediated by the RecQ winged helix subdomain and the C terminus of SSB. Interaction with SSB has important functional consequences for RecQ. SSB stimulates RecQ-mediated DNA unwinding, whereas deletion of the C-terminal RecQ-binding site from SSB produces a variant that blocks RecQ DNA binding and unwinding activities, suggesting that RecQ recognizes both the SSB C terminus and DNA in SSB.DNA nucleoprotein complexes. These findings, together with the noted interactions between human RecQ proteins and Replication Protein A, identify SSB as a broadly conserved RecQ-binding protein. These results also provide a simple model that explains RecQ integration into genome maintenance processes in E. coli through its association with SSB.  相似文献   

7.
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.  相似文献   

8.
Five members of the RecQ subfamily of DEx-H-containing DNA helicases have been identified in both human and mouse, and mutations in BLM, WRN, and RECQ4 are associated with human diseases of premature aging, cancer, and chromosomal instability. Although a genetic disease has not been linked to RECQ1 mutations, RECQ1 helicase is the most highly expressed of the human RecQ helicases, suggesting an important role in cellular DNA metabolism. Recent advances have elucidated a unique role of RECQ1 to suppress genomic instability. Embryonic fibroblasts from RECQ1-deficient mice displayed aneuploidy, chromosomal instability, and increased load of DNA damage.(1) Acute depletion of human RECQ1 renders cells sensitive to DNA damage and results in spontaneous γ-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks.(2) Consistent with a role in DNA repair, RECQ1 relocalizes to irradiation-induced nuclear foci and associates with chromatin.(2) RECQ1 catalytic activities(3) and interactions with DNA repair proteins(2,4,5) are likely to be important for its molecular functions in genome homeostasis. Collectively, these studies provide the first evidence for an important role of RECQ1 to confer chromosomal stability that is unique from that of other RecQ helicases and suggest its potential involvement in tumorigenesis.  相似文献   

9.
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.  相似文献   

10.
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.  相似文献   

11.
RecQ DNA helicases are multidomain enzymes that play pivotal roles in genome maintenance pathways. While the ATPase and helicase activities of these enzymes can be attributed to the conserved catalytic core domain, the role of the Helicase-and-RNase-D-C-terminal (HRDC) domain in RecQ function has yet to be elucidated. Here, we report the crystal structure of the E. coli RecQ HRDC domain, revealing a globular fold that resembles known DNA binding domains. We show that this domain preferentially binds single-stranded DNA and identify its DNA binding surface. HRDC domain mutations in full-length RecQ lead to surprising differences in its structure-specific DNA binding properties. These data support a model in which naturally occurring variations in DNA binding residues among diverse RecQ homologs serve to target these enzymes to distinct substrates and provide insight into a mechanism whereby RecQ enzymes have evolved distinct functions in organisms that encode multiple recQ genes.  相似文献   

12.
The RecQ gene family in plants   总被引:3,自引:0,他引:3  
RecQ helicases are conserved throughout all kingdoms of life regarding their overall structure and function. They are 3'-5' DNA helicases resolving different recombinogenic DNA structures. The RecQ helicases are key factors in a number of DNA repair and recombination pathways involved in the maintenance of genome integrity. In eukaryotes the number of RecQ genes and the structure of RecQ proteins vary strongly between organisms. Therefore, they have been named RecQ-like genes. Knockouts of several RecQ-like genes cause severe diseases in animals or harmful cellular phenotypes in yeast. Until now the largest number of RecQ-like genes per organism has been found in plants. Arabidopsis and rice possess seven different RecQ-like genes each. In the almost completely sequenced genome of the moss Physcomitrella patens at least five RecQ-like genes are present. One of the major present and future research aims is to define putative plant-specific functions and to assign their roles in DNA repair and recombination pathways in relation to RecQ genes from other eukaryotes. Regarding their intron positions, the structures of six RecQ-like genes of dicots and monocots are virtually identical indicating a conservation over a time scale of 150 million years. In contrast to other eukaryotes one gene (RecQsim) exists exclusively in plants. It possesses an interrupted helicase domain but nevertheless seems to have maintained the RecQ function. Owing to a recent gene duplication besides the AtRecQl4A gene an additional RecQ-like gene (AtRecQl4B) exists in the Brassicaceae only. Genetic studies indicate that a AtRecQl4A knockout results in sensitivity to mutagens as well as an hyper-recombination phenotype. Since AtRecQl4B was still present, both genes must have non-redundant roles. Analysis of plant RecQ-like genes will not only increase the knowledge on DNA repair and recombination, but also on the evolution and radiation of protein families.  相似文献   

13.
RECQ1 possesses DNA branch migration activity   总被引:3,自引:0,他引:3  
RecQ helicases are essential for the maintenance of genome stability. Five members of the RecQ family have been found in humans, including RECQ1, RECQ5, BLM, WRN, and RECQ4; the last three are associated with human diseases. At this time, only BLM and WRN helicases have been extensively characterized, and the information on the other RecQ helicases has only started to emerge. Our current paper is focused on the biochemical properties of human RECQ1 helicase. Recent cellular studies have shown that RECQ1 may participate in DNA repair and homologous recombination, but the exact mechanisms of how RECQ1 performs its cellular functions remain largely unknown. Whereas RECQ1 possesses poor helicase activity, we found here that the enzyme efficiently promotes DNA branch migration. Further analysis revealed that RECQ1 catalyzes unidirectional three-stranded branch migration with a 3' --> 5' polarity. We show that this RECQ1 activity is instrumental in specific disruption of joint molecules (D-loops) formed by a 5' single-stranded DNA invading strand, which may represent dead end intermediates of homologous recombination in vivo. The newly found enzymatic properties of the RECQ1 helicase may have important implications for the function of RECQ1 in maintenance of genomic stability.  相似文献   

14.
RecQ helicases: lessons from model organisms   总被引:5,自引:1,他引:4  
RecQ DNA helicases function during DNA replication and are essential for the maintenance of genome stability. There is increasing evidence that spontaneous genomic instability occurs primarily during DNA replication, and that proteins involved in the S-phase checkpoint are a principal defence against such instability. Cells that lack functional RecQ helicases exhibit phenotypes consistent with an inability to fully resume replication fork progress after encountering DNA damage or fork arrest. In this review we will concentrate on the various functions of RecQ helicases during S phase in model organisms.  相似文献   

15.
16.
17.
RecQ helicases are a ubiquitous family of DNA unwinding enzymes required to preserve genome integrity, thus preventing premature aging and cancer formation. The five human representatives of this family play non-redundant roles in the suppression of genome instability using a combination of enzymatic activities that specifically characterize each member of the family. These enzymes are in fact not only able to catalyze the transient opening of DNA duplexes, as any other conventional helicase, but can also promote annealing of complementary strands, branch migration of Holliday junctions and, in some cases, excision of ssDNA tails. Remarkably, the balance between these different activities seems to be regulated by protein oligomerization. This review illustrates the recent progress made in the definition of the structural determinants that control the different enzymatic activities of RecQ helicases and speculates on the possible mechanisms that RecQ proteins might use to promote their multiple functions.  相似文献   

18.
In recent years growing evidence has suggested that the RecQ helicases play a crucial role in preserving genome stability. The importance of this observation in humans is substantiated by the fact that the absence of a functional RecQ helicase is associated with genetic syndromes characterised by elevated predisposition to a wide variety of cancers. It is well recognized that maintenance of genome integrity relies on the accurate execution of the DNA replication process as well as on efficient DNA repair. A number of studies have described interactions of RecQ helicases with topoisomerases and it has been proposed that this cooperation may be essential for cell viability and the avoidance of cancer development in human cells.  相似文献   

19.
RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3′-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5′-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.  相似文献   

20.
Cells of all living organisms have evolved complex mechanisms to maintain genome stability. There is increasing evidence that spontaneous genomic instability occurs primarily during DNA replication. RecQ DNA helicases function during DNA replication and are essential for the maintenance of genome stability. In human cells, there exist five RecQ DNA helicases, and mutations of three of these helicases, encoded by the BLM, WRN and RECQL4 genes, give rise to the cancer predisposition disorders, Bloom syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. Individuals suffering from WS and RTS also show premature aging phenotypes. Although the two remaining helicases, RECQL1 and RECQL5, have not yet been associated with heritable human diseases, a single nucleotide polymorphism of RECQL1 is associated with reduced survival of pancreatic cancer, and RecQl5 knockout mice show a predisposition to cancer. Here, we review the functions eukaryotic RecQ helicases, focusing primarily on BLM in the maintenance of genome stability through various pathways of nucleic acid metabolism and with special reference to DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号