首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery from respiratory inhibition produced by the lung inflation reflex was studied in anesthetized dogs, paralyzed and ventilated with a respiratory pump. During constant ventilation the lungs were periodically inflated using positive end-expiratory pressure, while the respiratory motor output was monitored in the phrenic nerve. Inhibition of the phrenic discharge was followed by gradual recovery throughout 8-min inflation periods despite constant blood gases. Recording afferent potentials in a vagus nerve indicated that adaptation of pulmonary stretch receptors contributed to the initial recovery of the phrenic discharge, but this recovery continued after the receptor discharge had stabilized. The phrenic discharge also recovered after initial inhibition in two situations which avoided stretch receptor adaptation: a) when the stretch receptor discharge from the separate lungs was alternated in an overlapping manner by asynchronous pulmonary ventilation, and b) during continuous electrical stimulation of a vagus nerve. Phrenic activity was temporarily increased above its control value after periods of lung inflation, asynchronous ventilation and vagal stimulation. It is concluded that the lung inflation reflex gradually attenuates during prolonged stimulation due to both stretch receptor adaptation and changes within the central pathways.  相似文献   

2.
The first signs of reinnervation of the Pacinian corpuscles have been established at the middle of the second month after nerve crush. The regenerative process pass through two periods. During the first period the progressive increase of the Schwann receptor cells has been observed parallel to the reduction of the regenerating nerve branches. During the second period the reorganization and renewal of the regenerated organelles takes place. Some organelles as dense core vesicles, coated vesicles and microtubules of the receptor nerve fibre show noticeable dynamics. The regeneration has been established only in the preexisting after denervation capsulated remnants of the receptors. After nerve transection the regeneration is prolonged one month later and the less of quantity reinnervated receptors have been observed.  相似文献   

3.
Ethanol greatly modifies synaptic function and it affects the reinnervation time course. In order to better clarify the effects of ethanol on nerve regeneration, we have observed the recovery of algesthesia and reflex activity in the rat during the treatment with ethanol. For this purpose the posterior leg of Sprague Dawley rats was denervated by crushing the sciatic nerve and the recovery of algesthesia and reflex activity was tested at the level of the metatarsus-falanx articulation of the homolateral paw. During the reinnervation period, the animals were treated daily with ethanol 3 g/Kg of body weight. The recovery of algesthesia and reflex activity comes about in a medio-lateral direction and proceeds linearly. It is completed on the 25th day after the denervation. Ethanol does not cause changes in the time course of algesthesia recovery, however it does cause a slight delay in the recovery of the reflex activity.  相似文献   

4.
The purpose of these studies was to determine quantitatively the reflex cardiovascular responses to stimulation of the pulmonary C-fibers in dogs. We used a preparation in which the airway, pulmonary artery, and the pulmonary veins to the left lung were cannulated in situ. Ventilation and perfusion of the right lung maintained the animal in relatively normal homeostasis. Capsaicin, a decylenic acid amide of vanillylamine that selectively stimulates nerve endings of unmyelinated fibers (C-fibers), was injected into the left pulmonary artery in 5-ml boluses. Maximal reflex responses were obtained with concentrations as low as 0.8-1.6 X micrograms-1 X kg-1. Heart rate, hindlimb resistance, and left ventricular contractility were lowered transiently (the maximal responses showing declines of 40, 13, and 15.2%, respectively). As a result of these changes, combined with vasodilation in other resistance vessels, cardiac output fell 28% and blood pressure fell 35%. Interrupting the afferent neural pathway by severing the ipsilateral cervical vagus nerve eliminated these responses, confirming the distribution of their reflex origin. Although the role of these reflexes in homeostasis has not been decided, the results of this study suggest that the lungs of dogs, if appropriately stimulated, potentially can exert a major inhibitory influence on the neural regulation of cardiovascular function.  相似文献   

5.
A sphincter is described in the a. pulmonalis in the frog Rana temporaria. The sphincter begins abruptly where the pulmonary artery branches off from the a. pulmo-cutanea. It is constricted by vagal stimulation and acetylcholine. It also contracts actively when the lungs are artificially collapsed and opens when the lungs are inflated. It is suggested that previously reported fibers in the vagus nerve, which come from stretch receptors in the lungs, act as the afferent reflex arch. When the pulmonary artery constricts, the cutaneous artery and vein are distended by increased pressure which contributes to increased cutaneous flow. The sphincter therefore seems to play an important role in the adjustment of circulation to exclusive cutaneous respiration as for instance in submerged, wintering frogs. It is suggested that the decrease of pulmonary flow in such situations causes increased mixing in the heart and, perhaps, complete break-down of the double circulation. In frogs with exclusive skin respiration this would seem to be a functional necessity. Sphincters of similar location in turtles seem to be homologous with the one in Rana.  相似文献   

6.
A previous study in our laboratory demonstrated that the stimulation with microinjection of DL-homocysteic acid of cell bodies in the rostral portion of the external formation of the nucleus ambiguus (Aext) increased total lung resistance in dogs. In the present study anatomic experiments were conducted in dogs to determine if the rostral Aext contains vagal preganglionic cell bodies that give rise to axons in the pulmonary branches of the vagus nerve. The application of horseradish peroxidase (HRP) to either the pulmonary branches or the vagus at a point between the pulmonary branches and the cardiac branches resulted in retrograde labeling of cell bodies in both rostral Aext and the dorsal motor nucleus of the vagus (DMN). On the other hand, application of HRP to the vagus at a point below the pulmonary branches did not result in any retrogradely labeled cell bodies in rostral Aext but did result in labeled cell bodies in DMN. In another series of experiments DL-homocysteic acid (2.5 nmol in 25 nl) was microinjected at sites in rostral Aext and DMN. As we previously reported the injection of DL-homocysteic acid in rostral Aext increased total lung resistance. In contrast, in the same animals, the injection of DL-homocysteic acid in DMN did not change total lung resistance. We conclude that bronchomotor vagal preganglionic cell bodies are located in rostral Aext but not in DMN. The functional significance of vagal preganglionic cell bodies in DMN whose axons contribute to the pulmonary branches of the vagus nerve remains to be determined.  相似文献   

7.
Facial paralysis is a serious neurologic disorder, particularly when it affects the eye. Loss of the protective blink reflex may lead to corneal ulceration and, possibly, visual loss. The purpose of this study was to compare different nerve-grafting techniques to reanimate the paralyzed eyelid. Sixteen adult dogs (25 kg each) were allocated into four groups. Denervation of the left hemi-face was performed in all cases. One dog served as a control animal (group I). Group II dogs (n = 5) underwent end-to-side coaptation of the nerve graft to the intact palpebral branch and end-to-end coaptation to the denervated palpebral branch. Group III dogs (n = 5) underwent end-to-end coaptation of the nerve graft to the intact palpebral branch and end-to-end coaptation to the denervated palpebral branch. Group IV dogs (n = 5) underwent end-to-side coaptation of the nerve graft to the intact and denervated palpebral branches. The animals were monitored for 9 months after the surgical procedures, to allow adequate time for reinnervation. The dogs were postoperatively monitored with clinical observation, electrophysiologic testing, video motion analysis, and histologic assessments. Clinical observation and electrophysiologic testing demonstrated the production of an eye blink in the denervated hemi-face in all experimental groups. There was a trend toward increased speed of reinnervation for group III animals (end-to-end coaptations). It was concluded that end-to-side coaptation can produce a contralateral synchronous eye blink in a clinically relevant, large-animal model.  相似文献   

8.
The perfused in situ juvenile rat preparation produces patterns of phrenic discharge comparable to eupnea and gasping in vivo. These ventilatory patterns differ in multiple aspects, including most prominently the rate of rise of inspiratory activity. Although we have recently demonstrated that both eupnea and gasping are similarly modulated by a Hering-Breuer expiratory-promoting reflex to tonic pulmonary stretch, it has generally been assumed that gasping was unresponsive to afferent stimuli from pulmonary stretch receptors. In the present study, we recorded eupneic and gasplike efferent activity of the phrenic nerve in the in situ juvenile rat perfused brain stem preparation, with and without phrenic-triggered phasic pulmonary inflation. We tested the hypothesis that phasic pulmonary inflation produces reflex responses in situ akin to those in vivo and that both eupnea and gasping are similarly modulated by phasic pulmonary stretch. In eupnea, we found that phasic pulmonary inflation decreases inspiratory burst duration and the period of expiration, thus increasing burst frequency of the phrenic neurogram. Phasic pulmonary inflation also decreases the duration of expiration and increases the burst frequency during gasping. Bilateral vagotomy eliminated these changes. We conclude that the neural substrate mediating the Hering-Breuer reflex is retained in the in situ preparation and that the brain stem circuitry generating the respiratory patterns respond to phasic activation of pulmonary stretch receptors in both eupnea and gasping. These findings support the homology of eupneic phrenic discharge patterns in the reduced in situ preparation and eupnea in vivo and disprove the common supposition that gasping is insensitive to vagal afferent feedback from pulmonary stretch receptor mechanisms.  相似文献   

9.
Slowly adapting lung stretch receptors (SARs) and their vagal afferents are considered to play an important role in the mediation of numerous respiratory reflexes. The understanding of such reflexes has been facilitated by altering the discharge properties of SARs or by preventing the conduction of SAR-generated impulses to the brain stem. In a number of naturally occurring diseases of the peripheral nervous system, the vagus nerve and vagal reflexes are damaged. We have studied the function of SARs in anesthetized dogs with acrylamide neuropathy, a distal axonopathy that has been used as a model of naturally occurring neuropathies. There was a marked increase in threshold and decrease in firing rate of SARs in dogs with moderate neuropathy. Abnormal SAR discharge patterns were observed, and there was a depletion of those units innervated by the fastest conducting vagal afferent fibers in treated animals. Acrylamide induced degeneration of myelinated fibers in bronchial branches of the vagus nerve. These abnormalities were partially reversed upon withdrawal of the neurotoxin. Acrylamide may be a useful agent in the study of vagally mediated respiratory reflexes. SAR function is likely to be abnormal in diseases of the peripheral nervous system.  相似文献   

10.
Maintained inflation of the lung evokes abdominal muscle activity in anesthetized cats only if the vagus nerves are intact, indicating the importance of vagal receptors. The location of these receptors was determined in 14 anesthetized cats by comparing prevagotomy inflation responses of the abdominal muscles and diaphragm to the responses obtained after section of the thoracic vagi at one of three different levels. The abdominal muscle and diaphragm responses to maintained lung inflation persisted following vagotomy below the roots of the lung or denervation of the heart and great vessels. Denervation at the root of the lung, however, abolished the abdominal muscle response and the Hering-Breuer inflation reflex of the diaphragm. It is concluded that pulmonary receptors are essential for the abdominal expiratory activity, but vagal receptors in the abdomen, esophagus, trachea, heart and great vessels are not.  相似文献   

11.
Pulmonary vascular congestion or pulmonary embolism in humans produces shallow tachypnea, and indirect experimental evidence suggests that this characteristic breathing pattern may result from activation of vagal unmyelinated afferents from the lung. We have investigated, in decerebrate cats, reflex changes in breathing pattern and in the activation of the diaphragm, posterior cricoarytenoid, and thyroarytenoid muscles caused by activating C-fiber afferents in the vagus nerve. The right vagus nerve was sectioned distal to the origin of the recurrent laryngeal nerve, eliminating vagal afferent traffic although preserving motor innervation of the larynx on that side. The left cervical vagus was stimulated electrically, and efferent activation of the laryngeal muscles was avoided by cutting the left recurrent laryngeal nerve. Transmission to the brain of vagal afferent traffic resulting from this stimulation was controlled by graded cold block of the nerve cranial to the site of application of the stimulus. Activation of C-fibers, when A-fibers were blocked, significantly decreased respiratory period and amplitude of diaphragm inspiratory burst. In addition, this selective activation of vagal C-fibers augmented postinspiratory activity of the diaphragm and recruited phasic expiratory bursts in the thyroarytenoid. We conclude that, in unanesthetized decerebrate cats, afferent traffic of vagal C-fibers initiates a pontomedullary reflex that increases respiratory frequency, decreases tidal volume, and augments braking of expiratory airflow.  相似文献   

12.
To assess the role of intrapulmonary receptors on the ventilatory responses to exercise we studied six beagle dogs before and after chronic pulmonary denervation and five dogs before and after sham thoracotomies. Each exercise challenge consisted of 6 min of treadmill exercise with measurements taken during the third minute at 3.2 km/h, 0% grade, and during the third minute at 5.0 km/h, 0% grade. Inspiratory and expiratory airflows were monitored with a low-dead-space latex mask and pneumotachographs coupled to differential pressure transducers. Both pre- and postsurgery, all dogs exhibited a significant arterial hypocapnia and alkalosis during exercise. Denervation of the lungs had no significant effect on minute ventilation at rest or during exercise, although there was a lower frequency and higher tidal volume in the lung-denervated dogs at all measurement periods. Breathing frequency increased significantly during exercise in lung-denervated dogs but to a lesser magnitude than in the control dogs. The changes that occurred in breathing frequency in all animals were due predominantly to the shortening of expiratory time. Inspiratory time did not shorten significantly during exercise following lung denervation. We conclude from these data that intrapulmonary receptors which are deafferented by sectioning the vagi at the hilum are not responsible for setting the level of ventilation during rest or exercise but are involved in determining the pattern of breathing.  相似文献   

13.
The reflex tracheomotor responses of in situ isolated segments of the extrathoracic trachea of anesthetized, paralyzed, and ventilated dogs were monitored. Reflex tracheal constriction was evoked by passive lung deflation. The purpose of this study was to determine whether the prevailing state of oxygenation altered the magnitude of this reflex. Compared with the magnitude of the response during normoxia [arterial O2 tension (PaO2) = 78 Torr], that during hypoxia (PaO2 = 44 Torr) was nearly threefold larger while that during hyperoxia (PaO2 greater than 250 Torr) was about 50% smaller. The isocapnic changes in oxygenation by themselves usually had no effect on tracheomotor tone. The deflation-induced reflex tracheal constriction was eliminated by complete denervation of the tracheal segment but usually only diminished by partial denervation. Bilateral vagotomies or bilateral carotid body denervation also usually decreased the magnitude of the reflex. It appears that the magnitude of this reflex is dependent on the prevailing state of oxygenation and that a pulmonary stretch receptor-carotid body chemoreceptor interaction accounts for the exaggerated reflex tracheal constriction during hypoxia and the attenuated response during hyperoxia.  相似文献   

14.
High frequency oscillatory ventilation (HFOV) is a new method of artificial ventilation which has been advocated for use in critically ill individuals. It alters the discharge in pulmonary stretch receptors (SAR) from a phasic to a continuous pattern. Since some cardiovascular neurones in the medulla are influenced by the discharge from SAR, experiments were undertaken to determine whether the reflexes from the left atrial (volume) receptors (LAR) were influenced by HFOV. The reflex increases in heart rate and urine flow which result from activation of the (LAR) were examined during both intermittent positive pressure ventilation (IPPV) and HFOV. In five dogs, the increase in heart rate was 23.9 +/- 4.3 and 24.5 +/- 5.4 beats/min during IPPV and HFOV, respectively. In six dogs the response of an increase in urine flow was examined and this response also was not altered by HFOV. It is concluded that the integrity of these reflexes was unaffected by HFOV in the anesthetized dog model.  相似文献   

15.
We evaluated the hypothesis that the tonic discharge of pulmonary stretch receptors significantly influences the respiratory-modulated activities of cranial nerves. Decerebrate and paralyzed cats were ventilated with a servo-respirator, which produced changes in lung volume in parallel with integrated phrenic activity. Activities of the facial, hypoglossal, and recurrent laryngeal nerves and nerves to the thyroarytenoid muscle and triangularis sterni were recorded. After a stereotyped pattern of lung inflation, tracheal pressure was held at 1, 2, 4, or 6 cmH2O during the subsequent ventilatory cycle. Increases in tracheal pressure caused progressive reductions in both inspiratory and expiratory cranial nerve activities and progressive elevations in triangularis sterni discharge; peak levels of phrenic activity declined modestly. Similar changes were observed in normocapnia and hypercapnia. We conclude that the tonic discharge of pulmonary stretch receptors is an important determinant of the presence and magnitude of respiratory-modulated cranial nerve activity. This reflex mechanism may maintain upper airway patency and also regulate expiratory airflow.  相似文献   

16.
Airway smooth muscle tone is reinforced during the inspiratory phase of the breathing cycle and depends largely from neurogenic motor drive carried by the vagus nerve. This muscle tone seems to be produced mostly by a vago-vagal reflex loop initiated by the tonic discharge of tracheo-bronchial and/or alveolar receptors connected to thin sensory vagal fibres (non-myelinated or C-fibres). Inhibitory influences carried by large myelinated vagal fibres connected to tracheobronchial stretch receptors and also numerous afferents from the upper airways, systemic and pulmonary circulation, digestive tract and skeletal and respiratory muscles participate to the modulation of airway tone. The identification of neurotransmitters specific of the motor or sensory pathways helps to understand the peripheral modulation of airway motor drive and also the central integration of some peripheral informations.  相似文献   

17.
In acute experiments on dogs, we demonstrated that local immunogenic injury to the heart resulting from injection of anticardial cytotoxic serum is accompanied by suppression of a vagus-mediated depressor reflex evoked by intracoronary injection of 5 μg veratrine. Preliminary i.v. injection of 250 mg/kg phosphocreatine to a significant extent prevented the development of immunogenic heart injury and served to normalize the cardiogenic depressor reflex (we measured the heart rate, systemic arterial pressure, pressure in the left ventricle, and its first derivative, and also recorded the afferent activity in the cardial branches of the vagus nerve). These data are indicative of a protective effect of phosphocreatine on the receptor and afferent structures in the heart. At the same time, a parallel study of the effects of application of phosphocreatine on the spike activity of single neurons and on evoked potentials in the neocortex of rats showed that phosphocreatine increases the excitability of cortical neurons by facilitating the processes of synaptic transmission. This was manifested in an increase in the frequency of background spike activity of the neurons and in facilitation of the development of epileptiform reactions evoked by surface application of penicillin after preliminary applications of phosphocreatine.  相似文献   

18.
We examined the contribution of afferent vagal A- and C-fibers on abdominal expiratory muscle activity (EMA). In seven spontaneously breathing supine dogs anesthetized with alpha-chloralose we recorded the electromyogram of the external oblique muscle at various vagal temperatures before and after the induction of a pneumothorax. When myelinated fibers were blocked selectively by cooling the vagus nerves to 7 degrees C, EMA decreased to 40% of control (EMA at 39 degrees C). With further cooling to 0 degrees C, removing afferent vagal C-fiber activity, EMA returned to 72% of control. On rewarming the vagus nerves to 39 degrees C, we then induced a pneumothorax (27 ml/kg) that eliminated the EMA in all the dogs studied. Cooling the vagus nerves to 7 degrees C, during the pneumothorax, produced a slight though not significant increase in EMA. However, further cooling of the vagus nerves to 0 degrees C caused the EMA to return vigorously to 116% of control. In three dogs, intravenous infusion of a constant incrementally increasing dose of capsaicin, a C-fiber stimulant, decreased EMA in proportion to the dose delivered. These results suggest that EMA is modulated by a balance between excitatory vagal A-fiber activity, most likely from slowly adapting pulmonary stretch receptors, and inhibitory C-fiber activity, most likely from lung C-fibers.  相似文献   

19.
Historical aspects of respiratory reflexes from the lungs and airways are reviewed, up until about 10 yr ago. For most of the 19th century, the possible reflex inputs into the "respiratory center," the position of which had been identified, were very speculative. There was little concept of reflex control of the pattern of breathing. Then, in 1868, Breuer published his paper on "The self-steering of respiration via the Nervus Vagus." For the first time this established the role of vagal inflation and deflation reflexes in determining the pattern of breathing. Head later extended Breuer's work, and Kratschmer laid a similar basis for reflexes from the nose and larynx. Then, 50-60 yr later, the development of the thermionic valve and the oscilloscope allowed recording action potentials from single nerve fibers in the vagus. In 1933, Adrian showed that slowly adapting pulmonary stretch receptors were responsible for the inflation reflex. Later, Knowlton and Larrabee described rapidly adapting receptors and showed that they mediated deep augmented breaths and the deflation reflex. Still later, it was established that rapidly adapting receptors were, at least in part, responsible for cough. In 1954, Paintal began his study of C-fiber receptors (J receptors), work greatly extended by the Coleridges. Since approximately 10 yr ago, when the field of this review stops, there has been an explosion of research on lung and airway receptors, many aspects of which are dealt with in other papers in this series.  相似文献   

20.
1 We have studied the unit activity of 88 pulmonary stretch receptors (RPI) in the vagus nerve of the cat by using the single fibre technique. 2 In spite of a 38% decrease in tidal volume, the discharge frequency of RPI is statistically unchanged during polypnea, However, RPI are recruited earlier, but their discharge overlaps expiration. 3 Individual influences of tidal volume, temperature, and FACO2 on RPI activities are tested. During polypnea, the excitatory influences of hyperthermia and hypocapnia act against the depressing action of tidal volume reduction: RPI are still active. 4 During polypnea, respiratory rhythm and tidal volume are unchanged after bivagotomy. RPI activity seems functionally insignificant. This result suggests that the thermally induced respiratory response is mediated by structures in the upper brain stem (probably the preoptic anterior hypothalamus) and is not dependent on the integrity of the vagus nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号