首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sections of the medulla known as the locomotor strip were investigated during cat experiments using the horseradish peroxidase retrograde transport technique. The enzyme was administered under functional control (stimulating the injection site evoked locomotion). Results showed no evidence of a hypothetical column of cells either along the locomotor strip or medially to the strip. This would cast doubts on the existence of such a strip as a separate structural formation. It was shown by comparing findings from morphological research and experiments involving electrical stimulation that the bulbar locomotor strip may in fact consist of the spinal trigeminal tract and its nucleus. It is postulated that non-specific afferent activation of the brainstem reticular formation plays a crucial role in initiating locomotion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 308–315, May–June, 1987.  相似文献   

3.
4.
《Journal of morphology》2017,278(7):975-986
We studied the morphology of the atrioventricular conduction system (AVCS) and Purkinje fibers of the yak. Light and transmission electron microscopy were used to study the histological features of AVCS. The distributional characteristics of the His‐bundle, the left bundle branch (LBB), right bundle branch (RBB), and Purkinje fiber network of yak hearts were examined using gross dissection, ink injection, and ABS casting. The results showed that the atrioventricular node (AVN) of yak located in the right side of interatrial septum and had a flattened ovoid shape. The AVN of yak is composed of the slender, interweaving cells formed almost entirely of the transitional cells (T‐cells). The His‐bundle extended from the AVN, and split into left LBB and RBB at the crest of the interventricular septum. The LBB descended along the left side of interventricular septum. At approximately the upper 1/3 of the interventricular septum, the LBB typically divided into three branches. The RBB ran under the endocardium of the right side of interventricular septum, and extended to the base of septal papillary muscle, passed into the moderator band, crossed the right ventricular cavity to reach the base of anterior papillary muscle, and divided into four fascicles under the subendocardial layer. The Purkinje fibers in the ventricle formed a complex spatial network. The distributional and cellular component characteristics of the AVCS and Purkinje fibers ensured normal cardiac function.  相似文献   

5.
6.
Synaptic responses of single neurons to stimulation of the bulbar "locomotor strip" were recorded extracellularly from superior cervical segments in mesencephalic cats. With a strength of stimulation of about 30 µA these responses usually had a latent period of 2–7 msec and they arose in neurons located at a depth of between 2 and 4 mm from the dorsal surface (Rexed's laminae V–VIII). These neurons could not be excited antidromically by stimulation of the lumbar or lower cervical segments. However, antidromic responses could be evoked by stimulation of a region located 3–5 mm caudally to the site of recording. It is suggested that neurons of segments C2 and C3 excited by stimulation of the locomotor strip are components of a cell column along which activity spreads polysynaptically in the direction of spinal stepping generators.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 245–253, May–June, 1979.  相似文献   

7.
Previous studies of locomotor performance from a variety of perspectives often assumed that speed and limb length were strongly correlated. Despite support of this assumption from biomechanical models, few empirical studies have demonstrated a significant relationship between measures of locomotor capacity, such as maximum velocity, and length of the hindlimb at either the inter- or intra-specific level. We examined whether one measure of locomotor performance, maximum velocity, correlates with body size and elements of the hindlimb in hatchling marine iguanas (Amblyrhynchus cristatus). Larger hatchlings ran faster. Removing the effects of body size revealed that relative lengths of the tibia and hindfoot correlated with size-adjusted maximum velocity. Individuals with relatively long tibia and short pes were relatively faster than individuals with short tibia and long pes. Functional morphological analyses predict that femur length should correlate with maximum velocity. However, our analyses failed to support this prediction. Because hatchling marine iguanas exploit relatively open habitats, the relationship between maximum velocity and limb morphology may be interpreted as an adaptation enhancing escape from predators.  相似文献   

8.
The mechanism of interactions between receptor activation in the musculoskeletal system and stimulation of the spinal cord in the regulation of locomotor behavior was studied in healthy subjects. Afferent stimulation was tested for effect on the patterns of stepping movements induced by percutaneous stimulation of the spinal cord. A combination of percutaneous spinal cord stimulation and vibratory stimulation was shown to increase the amplitude of leg movements. It was demonstrated that vibratory stimulation of limb muscles at a frequency of less than 30 Hz can be used to control involuntary movements elicited by noninvasive stimulation of the spinal cord.  相似文献   

9.
Synaptic responses of single units in the "locomotor strip" of the hindbrain were recorded extracellularly. Short-latency responses appeared in neurons of the rostral part of the strip to stimulation of the "locomotor region" of the mesencephalon. Neurons of the caudal part of the strip responded to microstimulation of its other regions, including rostral. If the distance between the neuron and point of stimulation was under 2–3 mm, short-latency (1.2–1.6 msec) responses could be observed. The thresholds and latent periods of the responses increased when the distance apart increased. Polysynaptic responses with a latent period of 3–4 msec could be potentiated by an increase in the frequency of stimulation up to 30–40 Hz. It is suggested that axons of the "locomotor strip" are oriented in the rostrocaudal direction for a distance of 2–3 mm and give off collaterals which run toward neighboring neurons. The strip may be an integrative center, "intercalated" between the rostral portions of the brain stem and spinal cord.Deceased.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 510–518, September–October, 1978.  相似文献   

10.
Rhythmic activity is responsible for numerous essential motor functions including locomotion, breathing and chewing. In the case of locomotion, it has been realized for some time that the spinal cord contains sufficient circuitry to produce a sophisticated stepping pattern. However, the central pattern generator for locomotion in mammals has remained a ‘black box’ where inputs to the network were manipulated and the outputs interpreted. Over the last decade, new genetic approaches and techniques have been developed that provide ways to identify and manipulate the activity of classes of interneurons. The use of these techniques will be critically discussed and related to current models of network function.  相似文献   

11.
12.
The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances that have revealed the developmental and functional organization of these fundamental spinal motor networks in limbed and non-limbed animals. The comparison will highlight common principles and divergence in the organization of the spinal locomotor network structure in these different species as well as point to unresolved issues regarding the assembly and functioning of these networks.  相似文献   

13.
Summary Distribution of serotonin fibers in the spinal cord of the dog was investigated by means of a modified PAP method; a rabbit anti-serotonin serum prepared in the laboratory of the authors was used in this study. Serotonin fibers were revealed as PAP-positive dark-brown elements displaying dot-like varicosities (0.5–2.0 m in diameter). In the spinal cord of the dog, the distribution of serotonin fibers is extensive. These fibers occur more densely in more caudal segments and are most prominent at the sacrococcygeal level. From the level of the cervical spinal cord to the upper lumbar region, the descending serotonin fibers are located immediately under the pia mater in the ventrolateral portion of the lateral funiculus. In more caudal segments, serotonin fibers are dispersed throughout the ventral and lateral funiculi. These longitudinal en passage-fibers send numerous transverse collaterals to the gray matter. Serotonin fibers are distributed abundantly in the laminae I and III of the posterior column, while only a few fibers are found in the lamina II (substantia gelatinosa). In the intermediate zone, two descending serotonin pathways, i.e., lateral and medial longitudinal bundles, are observed to coincide topographically with the nucleus intermediolateralis at C8(T1)-L3(L4) and the nucleus intermediomedialis at C1-Co respectively. The former is particularly prominent and communicates with the contralateral bundle via commissural bundles at intervals of 300–500 m. The large motoneurons in the anterior column, especially those in the nucleus myorabdoticus lateralis within the cervical and lumbar enlargements, are closely surrounded by fine networks of serotonin fibers and terminals.Supported by a grant (No. 56440022) from the Ministry of Education, Science and Culture, Japan  相似文献   

14.
15.
Synaptic responses of medullary neurons to stimulation of the bulbar locomotor strip with a current of about 20 µA were studied by an extracellular recording method in mesencephalic cerebellectomized cats. The mean latent period of response of 177 neurons was 3.2 msec. Neurons in which synaptic responses appeared were located in both the lateral and the medial parts of the reticular formation, but short-latency responses were recorded predominantly in the lateral part. In response to a single stimulus 32% of neurons generated a discharge of 2–4 spikes. "Respiratory" neurons were not excited by stimulation of the locomotor point. The results indicate that neurons of the locomotor strip may have an excitatory action not only on each other, but also on neurons located medially. The possible mechanisms of the spread of activity to the superior cervical segments of the spinal cord are discussed.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 275–282, May–June, 1981.  相似文献   

16.
A conspicuous nectary disk is common but has a distinguishing morphology in the cosmopolitan genus Euonymus. Our study focuses on the morphology of floral nectaries in 21 representatives of Euonymus and Glyptopetalum. Two main types of nectaries were documented:a mix of inter-and extrastaminal nectaries existed between the corolla and the stigma, while the intrastaminal nectaries were distributed between the stigma and the stamen bases. The main route of nectar release in Euonymus is via modified stomata, and different nectarostomata locations were observed:in depressions, slightly raised above the epidermal surface or at the same level as the epidermis. Floral nectaries in E. sect. Echinococcus species developed into the protrusions on the fruit surface at the later stage. The development of nectaries not only explained the mystery of the origin of the echinate fruit surface, but also showed that differences in fruit surface might be inappropriate for use in infrageneric classification. These discoveries inform morphological observations of floral nectaries in Euonymus.  相似文献   

17.
18.
19.
Metamorphosis in the anuran frog, Xenopus laevis, involves profound structural and functional transformations in most of the organism's physiological systems as it encounters a complete alteration in body plan, habitat, mode of respiration and diet. The metamorphic process also involves a transition in locomotory strategy from axial-based undulatory swimming using alternating contractions of left and right trunk muscles, to bilaterally-synchronous kicking of the newly developed hindlimbs in the young adult. At critical stages during this behavioural switch, functional larval and adult locomotor systems co-exist in the same animal, implying a progressive and dynamic reconfiguration of underlying spinal circuitry and neuronal properties as limbs are added and the tail regresses. To elucidate the neurobiological basis of this developmental process, we use electrophysiological, pharmacological and neuroanatomical approaches to study isolated in vitro brain stem/spinal cord preparations at different metamorphic stages. Our data show that the emergence of secondary limb motor circuitry, as it supersedes the primary larval network, spans a developmental period when limb circuitry is present but not functional, functional but co-opted into the axial network, functionally separable from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, recent experiments on spontaneously active in vitro preparations from intermediate metamorphic stage animals have revealed that the biogenic amines serotonin (5-HT) and noradrenaline (NA) exert short-term adaptive control over circuit activity and inter-network coordination: whereas bath-applied 5-HT couples axial and appendicular rhythms into a single unified pattern, NA has an opposite decoupling effect. Moreover, the progressive and region-specific appearance of spinal cord neurons that contain another neuromodulator, nitric oxide (NO), suggests it plays a role in the maturation of limb locomotor circuitry. In summary, during Xenopus metamorphosis the network responsible for limb movements is progressively segregated from an axial precursor, and supra- and intra-spinal modulatory inputs are likely to play crucial roles in both its functional flexibility and maturation.  相似文献   

20.
Endocannabinoids act as retrograde signals to modulate synaptic transmission. Little is known, however, about their significance in integrated network activity underlying motor behavior. We have examined the physiological effects of endocannabinoids in a neuronal network underlying locomotor behavior using the isolated lamprey spinal cord. Our results show that endocannabinoids are released during locomotor activity and participate in setting the baseline burst rate. They are released in response to mGluR1 activation and act as retrograde messengers. This conditional release of endocannabinoids can transform motoneurons and crossing interneurons into modulatory neurons by enabling them to regulate their inhibitory synaptic inputs and thus contribute to the modulation of the locomotor burst frequency. These results provide evidence that endocannabinoid retrograde signaling occurs within the locomotor network and contributes to motor pattern generation and regulation in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号