首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stepwise solution syntheses of the homo-oligomers Boc-(Asn)n-NHCH3 (n = 1-5; I1-5), Boc-[[GlcNAc(Ac)3beta]Asn]n-NHCH3 (n = 1-8; II1-8), and Boc-[(GlcNAcbeta)Asn]n-NHCH3 (n = 1-8; III1-8) are described. Members of the series III were obtained by deacetylation of the corresponding members of the series II. The conformational preferences of the N-protected homo-peptides of the three series were investigated by spectroscopic techniques. 1H-NMR measurements were carried out in various solvents; the CD spectra were recorded in water, aqueous SDS and TFE. The poor solubility of the oligomers of the three series prevented FT-IR measurements in solution. NMR and IR measurements indicate the existence of unordered structures containing some gamma-turns in the carbohydrate-free oligomers and the presence of beta-turns in the glycosylated oligopeptides, whether acetylated or not. The CD spectra do not indicate the presence of organized structures. The sugar moieties apparently do not have a structure-inducing effect on the asparagine homo-oligomer main chain.  相似文献   

2.
Stepwise solution syntheses are described of the homo-oligomers Z-(Thr)n-NHCH3 (n=1–4, I 1–4), Z-{[Gal(Ac)4β]Thr}n-NHCH3(n=1–5, II 1–5) and Z-[(Galβ)Thr]n-NHCH3 (n=1−5, III 1–5). Members of the III 1–5 series were obtained by de-acetylation of the corresponding oligomers of the II 1–5 series. The conformational preferences of the terminally protected homo-peptides of the three series were investigated by FT-IR absorption spectroscopy both in the solid state and in CDCl3 solution, at various concentrations. Proton NMR measurements in CDCl3 and in DMSO-d6 were also carried out and the effect of temperature variation on the chemical shifts of amide protons was determined in DMSO-d6 (range 298–335 K) and in CDCl3 (range 298–320 K). CD spectra were recorded in water and in TFE. Solubility problems prevented measurements in CDCl3 solution for Z-(Thr)4-NHCH3 and for the entire III 1–5 series. The existence of unordered structures in the carbohydrate-free oligomers and of more or less extended, organized structures in the glycosylated derivatives is indicated by the NMR and IR measurements. The sugar moieties apparently show a structure-inducing effect on the peptide chain. ©1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The structure of intracellular third loop peptide (betaIII-2: RRSSKFCLKEKKALK) was studied by CD and NMR spectroscopy. According to the CD study, this peptide forms a helix in the TFE solution. The three-dimensional molecular structure in TFE was determined by the 2D (1)H NMR spectroscopy. The structure consists of a positive charge cluster on the C-terminal side of the peptide chain. This part will be an active site of the peptide interacting with the G-protein.  相似文献   

4.
J Kweon  H J Lee  Y M Kim  Y S Choi  K B Lee 《FEBS letters》1999,456(2):343-348
The structure of bovine growth hormone releasing factor (bGHRF) consisting of 44 amino acids has been studied in CD and 1H nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular modeling. Since bGHRF does not have an ordered structure in water alone, a 30% 2,2,2-trifluoroethanol (TFE) aqueous solvent was used to induce considerable alpha-helical structures, which corresponds to a helical content of approximately 62% as determined by circular dichroism (CD). The secondary structure was obtained from nuclear Overhauser enhancement and 3J(HN alpha) coupling constant in 30% TFE solution. Three-dimensional structures consistent with NMR data were generated by using distance geometry calculation. A set of 267 interproton distances derived from nuclear Overhauser effect correlation spectroscopy (NOESY) experiments and coupling constants were used. From the initial random conformations, 50 distance geometry structures with minimal violations were selected for further refinement. The 14 best structures were obtained after simulated annealing calculation with energy minimization. The structure of bGHRF in 30% TFE solution was characterized by one alpha-helix (residues 8-19), two poorly constrained helices (residues 23-27 and residues 31-34) and a beta I(III)-turn fragment (residues 20-23; phi(i+1) = -53.1 degrees, psi(i+1) = -19.6 degrees, phi(i+2) = -59.9 degrees, psi(i+2) = -20.6 degrees) connected by the segments of less defined structures in N-terminal and omega-shaped flexible C-terminal determined from NOESY cross peaks between helical segment (residues 14-18) and tail fragment (residues 42-44). The obtained structure will play an important role toward the understanding of the structural and functional role of the GHRF.  相似文献   

5.
S Mammi  N J Mammi  E Peggion 《Biochemistry》1988,27(4):1374-1379
The 1H NMR spectrum of the title peptide, H-Leu-(Glu)5-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2, in 90% H2O/10% D2O was assigned by two-dimensional methods, and the displacement of the proton resonances upon addition of 2,2,2-trifluoroethanol (TFE) was followed. This permitted the assignment of the spectrum in 90% TFE/10% D2O. While the water conformation of the minigastrin analogue is random, the CD spectrum indicates that an ordered structure is present in TFE. Variable-temperature NMR data in this medium show that six amide protons have low temperature coefficients, two of the five Glu's, Trp, Nle, Asp, and Phe. These results were interpreted in terms of an alpha-helical stretch comprising the Leu and the five Glu residues and a 3(10)-helix initiated by a beta-turn at the sequence -Ala-Tyr-Gly-Trp-. Both CD and NMR data at different solvent compositions show two regions of conformational change, between 20 and 25% water and above 60% water.  相似文献   

6.
7.
Najbar LV  Craik DJ  Wade JD  McLeish MJ 《Biochemistry》2000,39(19):5911-5920
Using CD and 2D (1)H NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the (1)H NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Halpha chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and HD-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme.  相似文献   

8.
Schievano E  Pagano K  Mammi S  Peggion E 《Biopolymers》2005,80(2-3):294-302
Aib-rich side-chain lactam-bridged oligomers Ac-(Glu-Aib-Aib-Lys)n-Ala-OH with n = 1,2,3 were designed and synthesized as putative models of the 3(10)-helix. The lactam bridge between the side chains of L-Glu and L-Lys in (i)--(i + 3) positions was introduced in order to enhance the structural preference toward the right-handed 3(10)-helix. The conformational properties of the three peptides were studied in trifluoroethanol (TFE) solution by CD, NMR, and computer simulations. The structural information was derived mainly from the analysis of nuclear Overhauser effect spectroscopy spectra. The presence of alpha H(i)-HN(i + 2) and of alpha H(i)-HN(i + 3) connectivities and the absence of alpha H(i)-HN(i + 4) connectivities indicate that these peptides fold into a 3(10)-helix rather than into an alpha-helix. Based on these conformational features, stereospecific assignment of the Aib methyl groups was possible. The results of such experiments and of the subsequent distance geometry and restrained molecular dynamics simulations reveal a marked preference of these peptides for 3(10)-helix. The CD spectra of these peptides indicate that the helix content increases upon chain elongation. The CD spectrum of the trimer is characterized by a negative band at 200 nm and by a weak positive band around 220 nm. The CD spectrum in TFE is different from that observed in aqueous solution in the presence of SDS micelles, reported in our previous work, and from those reported by a different research group for 3(10)-helical peptides. A possible reason for these differences could rest in the presence of different equilibria of the conformer populations of the various peptides in different solvent systems.  相似文献   

9.
Zhang X  Adda CG  Low A  Zhang J  Zhang W  Sun H  Tu X  Anders RF  Norton RS 《Biochemistry》2012,51(7):1380-1387
Merozoite surface protein 2 (MSP2), an abundant glycosylphosphatidylinositol-anchored protein on the surface of Plasmodium falciparum merozoites, is a promising malaria vaccine candidate. MSP2 is intrinsically disordered and forms amyloid-like fibrils in solution under physiological conditions. The 25 N-terminal residues (MSP2(1-25)) play an important role in both fibril formation and membrane binding of the full-length protein. In this study, the fibril formation and solution structure of MSP2(1-25) in the membrane mimetic solvents sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), and trifluoroethanol (TFE) have been investigated by transmission electronic microscopy, turbidity, thioflavin T fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy. Turbidity data showed that the aggregation of MSP2(1-25) was suppressed in the presence of membrane mimetic solvents. CD spectra indicated that helical structure in MSP2(1-25) was stabilized in SDS and DPC micelles and in high concentrations of TFE. The structure of MSP2(1-25) in 50% aqueous TFE, determined using NMR, showed that the peptide formed an amphipathic helix encompassing residues 10-24. Low concentrations of TFE favored partially folded helical conformations, as demonstrated by CD and NMR, and promoted MSP2(1-25) fibril formation. Our data suggest that partially folded helical conformations of the N-terminal region of MSP2 are on the pathway to amyloid fibril formation, while higher degrees of helical structure stabilized by high concentrations of TFE or membrane mimetics suppress self-association and thus inhibit fibril formation. The roles of the induced helical conformations in membrane interactions are also discussed.  相似文献   

10.
A 22-residue synthetic peptide encompassing the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase was studied by two-dimensional NMR and CD spectroscopy. In water the peptide does not form any regular structure; however, addition of the helix-inducing solvent trifluoroethanol (TFE) causes it to form an alpha-helical structure. The proton NMR spectra of this peptide in 25% and 40% TFE were assigned by double quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser effect correlated spectroscopy spectra. In addition, the alpha-carbon chemical shifts were obtained from (1H,13C)-heteronuclear multiple quantum coherence spectra. The presence of numerous dNN(i, i + 1), d alpha N(i, i + 3), and d alpha beta(i, i + 3) NOE crosspeaks indicates that an alpha-helix can be formed from residues 3 to 20; this is further supported by the CD data. Upfield alpha-proton and downfield alpha-carbon shifts in this region of the peptide provide further support for the formation of an alpha-helix. The helix induced by TFE appears to be similar to that formed upon binding of the peptide to CaM.  相似文献   

11.
The formation of amyloid fibrils by the SH3 domain of the alpha-subunit of bovine phosphatidylinositol-3'-kinase (PI3-SH3) has been investigated under carefully controlled solution conditions. NMR and CD characterisation of the denatured states from which fibrils form at low pH show that their properties can be correlated with the nature of the resulting aggregates defined by EM and FTIR spectroscopy. Compact partially folded states, favoured by the addition of anions, are prone to precipitate rapidly into amorphous species, whilst well-defined fibrillar structures are formed slowly from more expanded denatured states. Kinetic data obtained by a variety of techniques show a clear lag phase in the formation of amyloid fibrils. NMR spectroscopy shows no evidence for a significant population of small oligomers in solution during or after this lag phase. EM and FTIR indicate the presence of amorphous aggregates (protofibrils) rich in beta-structure after the lag phase but prior to the development of well-defined amyloid fibrils. These observations strongly suggest a nucleation and growth mechanism for the formation of the ordered aggregates. The morphologies of the fibrillar structures were found to be highly sensitive to the pH at which the protein solutions are incubated. This can be attributed to the effect of small perturbations in the electrostatic interactions that stabilise the contacts between the protofilaments forming the amyloid fibrils. Moreover, different hydrogen bonding patterns related to the various aggregate morphologies can be distinguished by FTIR analysis.  相似文献   

12.
We synthesized by solution methods a water-soluble, terminally blocked heptapeptide based on five markedly helicogenic, C(alpha)-tetrasubstituted alpha-amino acids C(alpha)-methyl-L-norvalines and two strongly hydrophilic 2-amino-3-[1-(1,4,7-triazacyclononane)]-L-propanoic acid residues at positions 2 and 5. A Fourier transform infrared absorption and NMR analysis in deuterated chloroform and aqueous solutions of the heptapeptide and two side-chain protected synthetic precursors confirmed our working hypothesis that all oligomers are folded in the 3(10)-helical conformation. Based on these findings, we exploited this heptapeptide as a chiral reference compound for detailed electronic CD, vibrational CD, and Raman optical activity characterizations of the 3(10)-helix in aqueous solution.  相似文献   

13.
A 14 amino acid residue peptide from the helical region of Scorpion neurotoxin has been structurally characterized using CD and NMR spectroscopy in different solvent conditions. 2,2,2-Trifluoroethanol (TFE) titration has been carried out in 11 steps from 0 to 90% TFE and the gradual stabilization of the conformation to form predominantly alpha-helix covering all of the 14 residues has been studied by 1H and 13C NMR spectroscopy. Detailed information such as coupling constants, chemical shift indices, NOESY peak intensities and amide proton temperature coefficients at each TFE concentration has been extracted and analysed to derive the step-wise preferential stabilization of the helical segments along the length of the peptide. It was found that there is a finite amount of the helical conformation in the middle residues 5-11 even at low TFE concentrations. It was also observed that > 75% TFE (v/v) is required for the propagation of the helix to the N and C termini and for correct packing of the side chains of all of the residues. These observations are significant to understanding the folding of this segment in the protein and may throw light on the inherent preferences and side chain interactions in the formation of the helix in the peptide.  相似文献   

14.
S Park  S H Park  H C Ahn  S Kim  S S Kim  B J Lee  B J Lee 《FEBS letters》2001,507(1):95-100
Novel cationic antimicrobial peptides, named nigrocin 1 and 2, were isolated from the skin of Rana nigromaculata and their amino acid sequences were determined. These peptides manifested a broad spectrum of antimicrobial activity against various microorganisms with different specificity. By primary structural analysis, it was revealed that nigrocin 1 has high sequence homology with brevinin 2 but nigrocin 2 has low sequence homology with any other known antimicrobial peptides. To investigate the structure-activity relationship of nigrocin 2, which has a unique primary structure, circular dichroism (CD) and homonuclear nuclear magnetic resonance spectroscopy (NMR) studies were performed. CD investigation revealed that nigrocin 2 adopts mainly an alpha-helical structure in trifluoroethanol (TFE)/H(2)O solution, sodium dodecyl sulfate (SDS) micelles, and dodecylphosphocholine micelles. The solution structures of nigrocin 2 in TFE/H(2)O (1:1, v/v) solution and in SDS micelles were determined by homonuclear NMR. Nigrocin 2 consists of a typical amphipathic alpha-helix spanning residues 3-18 in both 50% TFE solution and SDS micelles. From the structural comparison of nigrocin 2 with other known antimicrobial peptides, nigrocin 2 could be classified into the family of antimicrobial peptides containing a single linear amphipathic alpha-helix that potentially disrupts membrane integrity, which would result in cell death.  相似文献   

15.
The co-solvent 2,2,2-trifluoroethanol (TFE) has been often used to aid formation of secondary structure in solution peptides or alternately as a denaturant within protein folding studies. Hen egg white lysozyme (HEWL) and a synthetic model peptide defining HEWL helix-4 were used as comparative model systems to systematically investigate the effect of increasing TFE concentrations on the structure of proteins and peptides. HEWL was analyzed using NMR, far-UV CD and fluorescence spectroscopy; with correlation of these results towards changes in enzymatic activity and the helix-4 peptide was analysed using NMR. Data illustrates two conflicting modes of interaction: Low TFE concentrations stabilize tertiary structure, observed from an increase in the number of NMR NOE contacts. Higher TFE concentrations denatured HEWL with the loss of lysozyme tertiary structure. The effects of TFE upon secondary structural elements within HEWL are distinct from those observed for the helix-4 peptide. This illustrates a dissimilar interaction of TFE towards both protein and peptide at equivalent TFE concentrations. The concentration that TFE promotes stabilization over denaturation is likely to be protein dependent although the structural action can be extrapolated to other protein systems with implications for the use of TFE in structural stability studies.  相似文献   

16.
The conformations of melanostatin have been studied experimentally using CD spectroscopy and via calculations. In aqueous solution and 2,2,2-trifluoroethanol (TFE) there is no evidence that monomers of the tripeptide exist in an ordered (β-bend) structure. In water and TFE solutions (3–6 × 10?4M) the neutral molecules aggregate very slowly, taking about 3 days to attain equilibrium at room temperature. At equivalent concentrations in TFE, although not in water, the cationic molecules also slowly aggregate, although to a lesser extent. Calculations using rotational isomeric state theory give the most probable unperturbed end-to-end distance of the molecule at 9.3 ± 0.1 Å and indicate that a vast majority of the molecules exist in some extended conformation, end-to-end distance ≥6 Å. Only 0.4% of the molecules are calculated to have O…?H separations compatible with a β-bend structure. An intramolecular hydrogen bond must have an energy at least 2 kcal/mol lower than that of an intermolecular hydrogen bond to solvent if a β-bend is to be experimentally observable.  相似文献   

17.
It is important to establish the structural properties of linker histones to understand the role they play in chromatin higher order structure and gene regulation. Here, we use CD, NMR, and IR spectroscopy to study the conformation of the amino-terminal domain of histone H1 degrees, free in solution and bound to the DNA. The NH(2)-terminal domain has little structure in aqueous solution, but it acquires a substantial amount of alpha-helical structure in the presence of trifluoroethanol (TFE). As in other H1 subtypes, the basic residues of the NH(2)-terminal domain of histone H1 degrees are clustered in its COOH-terminal half. According to the NMR results, the helical region comprises the basic cluster (Lys(11)-Lys(20)) and extends until Asp(23). The fractional helicity of this region in 90% TFE is about 50%. His(24) together with Pro(25) constitute the joint between the NH(2)-terminal helix and helix I of the globular domain. Infrared spectroscopy shows that interaction with the DNA induces an amount of alpha-helical structure equivalent to that observed in TFE. As coulombic interactions are involved in complex formation, it is highly likely in the complexes with DNA that the minimal region with alpha-helical structure is that containing the basic cluster. In chromatin, the high positive charge density of the inducible NH(2)-terminal helical element may contribute to the binding stability of the globular domain.  相似文献   

18.
A designed peptide, PGAa showed an excellent antifungal activity as well as an efficient bactericidal activity toward gram-positive, especially in the pathogenic yeast Candida albicans 28838. The solution structures of PGAa have been determined both in 40% TFE/water solution and DPC micelle by CD and NMR spectroscopy. Based on NOEs, vicinal coupling constants, backbone amide exchange rates, and chemical shift indices, PGAa formed a long amphipathic alpha-helical conformation in both TFE and DPC micelle environments, spanning the residues Ile(2)-Ala(19) in TFE and Lys(5)-Ala(19) in DPC micelle, respectively. Solution structures suggested that the hydrophobic residues would interact with the fatty acyl chains of the lipid bilayer, while the positively charged side-chains exposed to aqueous environments. Therefore, we conclude that the alpha-helical structure as well as the highly amphiphatic nature of PGAa peptide may play a critical role in its antimicrobial activity as well as selectivities in different species.  相似文献   

19.
Abstract NMR and CD spectroscopy have been used to examine the conformation of the peptide, β(12-28), (VHHQKLVFFAEDVGSNK) in aqueous and 60% TFE/40% H(2)0 solution at pH 2.4. In 60% TFE solution, the peptide is helical as confirmed by the CD spectrum and by the pattern of the NOE cross peaks detected in the NOESY spectrum of the peptide. In aqueous solution, the peptide adopts a more extended and flexible conformation. Broadening of resonances at low temperature, temperature-dependent changes in the chemical shifts of several of the CH(α) resonances and the observation of a number of NOE contacts between the hydrophobic side-chain protons of the peptide are indicative of aggregation in aqueous solution. The behavior of β(12-28) in 60% TFE and in aqueous solution are consistent with the overall conformation and aggregation behavior reported for the larger peptide fragment, β(1-28) and the parent β-amyloid peptide.  相似文献   

20.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal incretin hormone, which modulates physiological insulin secretion. Because of its glucose-sensitive insulinotropic activity, there has been a considerable interest in utilizing the hormone as a potential treatment for type 2 diabetes. Structural parameters obtained from NMR spectroscopy combined with molecular modeling techniques play a vital role in the design of new therapeutic drugs. Therefore, to understand the structural requirements for the biological activity of GIP, the solution structure of GIP was investigated by circular dichroism (CD) followed by proton nuclear magnetic resonance (NMR) spectroscopy. CD studies showed an increase in the helical character of the peptide with increasing concentration of trifluoroethanol (TFE) up to 50%. Therefore, the solution structure of GIP in 50% TFE was determined. It was found that there was an alpha-helix between residues 6 and 29, which tends to extend further up to residue 36. The implications of the C-terminal extended helical segment in the inhibitory properties of GIP on gastric acid secretion are discussed. It is shown that the adoption by GIP of an alpha-helical secondary structure is a requirement for its biological activity. Knowledge of the solution structure of GIP will help in the understanding of how the peptide interacts with its receptor and aids in the design of new therapeutic agents useful for the treatment of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号