首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of aroyl-pyrrolyl-hydroxy-amides (APHAs) active as histone deacetylase (HDAC) inhibitors has been reported. The new derivatives were designed by replacing the benzene ring of the prototype 1 with both aromatic and aliphatic, monocyclic and polycyclic rings (compounds 3a-i), or by inserting a number of substituents on the methylene linker of 1 (compounds 4a-l). Compounds 3a-i and 4a-l were active at sub-micromolar level against the maize deacetylases HD1-B (class I), HD1-A (class II), and HD2. Tested at 5 microM against human HDAC1 and HDAC4, 3b, 4a, and 4j showed significant HDAC1 inhibition, whereas on HDAC4 only 4a was highly effective. On the human leukemia U937 cell line, the same compounds did not alter the cell cycle phases and failed in inducing apoptosis. However, they displayed granulocytic differentiation at 5 microM, with 3b being the most potent (76% CD11c positive cells). Tested to evaluate their effects on histone H3 and alpha-tubulin acetylation, 3b and 4a showed high H3 acetylation, whereas 4a and 4b were the most potent with alpha-tubulin as a substrate.  相似文献   

2.
Several human diseases are associated with aberrant epigenetic pathways mediated by histone deacetylases (HDACs), especially HDAC6, a class IIb HDACs, which has emerged as an attractive target for neurodegenerative and autoimmune disease therapeutics. In a previous study, we developed the novel HDAC6-selective inhibitor 9a ((E)-N-hydroxy-4-(2-styrylthiazol-4-yl)butanamide) and showed that it has anti-sepsis activity in vivo. In this study, we conducted structure-activity relationship (SAR) studies to optimize the activity and selectivity of HDAC6, synthesizing its derivatives with various aliphatic linker sizes and cap structures. We identified 6u ((E)-N-hydroxy-3-(2-(4-fluorostyryl)thiazol-4-yl)propanamide), which has nanomolar inhibition activity and a 126-fold selectivity for HDAC6 over HDAC1. Through the docking analyses of 6u against HDAC subtypes, we revealed the importance of the optimal aliphatic linker size, as well as the electronic substituent effect and rigidity of the aryl cap group. Thus, we suggest a new rationale for the design of HDAC6-selective inhibitors.  相似文献   

3.
We have identified a potent, cell permeable and CNS penetrant class IIa histone deacetylase (HDAC) inhibitor 22, with >500-fold selectivity over class I HDACs (1,2,3) and ~150-fold selectivity over HDAC8 and the class IIb HDAC6 isoform. Dose escalation pharmacokinetic analysis demonstrated that upon oral administration, compound 22 can reach exposure levels in mouse plasma, muscle and brain in excess of cellular class IIa HDAC IC50 levels for ~8?h. Given the interest in aberrant class IIa HDAC function for a number of neurodegenerative, neuromuscular, cardiac and oncology indications, compound 22 (also known as CHDI-390576) provides a selective and potent compound to query the role of class IIa HDAC biology, and the impact of class IIa catalytic site occupancy in vitro and in vivo.  相似文献   

4.
5.
Phospholipid-linked glycation products are supposed to play an important role in lipid oxidation in vivo. Independent syntheses and unequivocal structural characterization are reported for the phosphatidyl ethanolamine (PE)-derived Amadori compound 4-hydroxy-4-oxo-1-[(palmitoyloxy)methyl]-9-(2,3,4,5-tetrahydrox ytetrahydro-2H-pyran-2-yl)-3,5-dioxa-8-aza-4lambda5-ph osphanon-1-yl palmitate, pyrrolecarbaldehyde 2-[[[2-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]ethoxy](hydroxy)phosph oryl]oxy]-1-[(palmitoyloxy)methyl]ethyl palmitate, the carboxymethyl (CM) derivative 7-hydroxy-7,13-dioxo-10-(palmitoyloxy)-6,8,12-trioxa-3-aza-+ ++7lambda5-phosphaoctacosan-1-oic acid, and the carboxyethyl (CE) derivative 7-hydroxy-2-methyl-7,13-dioxo-10-(palmitoyloxy)-6,8,12-trioxa++ +-3-aza-7lambda5-phosphaoctacosan-l-oic acid. With these reference compounds, a liquid chromatography-mass spectrometry (LCMS) method for the determination of such PE-linked Maillard products has been developed.  相似文献   

6.
A series of N1-arylsulfonyl-3-(pyrrolidin-3-yl)-1H-indole and N1-arylsulfonyl-3-(4-chloro-2,5-dihydro-1H-pyrrol-3-yl)-1H-indole derivatives (tryptamine derivatives with rigidized side chain) have been prepared and tested for their binding affinity to 5-HT6 receptor. Several compounds displayed potent binding affinity for the 5-HT6 receptor when tested in in vitro binding assay. The primary SAR indicates that rigidification of dimethylamino alkyl chain at C3 of indole carbon maintains the binding affinity to 5-HT6R. The lead compound N1-benzenesulfonyl-3-(4-chloro-1-methyl-2,5-dihydro-1H-pyrrol-3-yl)-1H-indole, 10a (Kb = 0.1 nM) has shown excellent in vitro affinity and was active in animal models of cognition like NORT and water maze.  相似文献   

7.
Walter L  Günther E 《Immunogenetics》2000,51(10):829-837
We physically mapped the centromeric part of the BN rat MHC (RT1n haplotype) in a contig of overlapping P1-derived artificial chromosome (PAC) clones encompassing about 300 kb. The following genes were identified and ordered as: (Syngap, Hset, Daxx, Bing1)-Tapbp-Rgl2-Ke2-Bing4-B3galt4- Rps18-Sacm2l-RT1-A1-RT1-A2-RT1-A3-Ring1-Ring2-++ +Ke4-Rxrb-Col11a2-RT1-Hb-Ring3-RT1-DMb. Thus, in contrast to other RT1 haplotypes, RT1n contains three class I genes, RT1-A1, RT1-A2, and RT1-A3, mapping between the Sacm2l and Ring1 genes. Comparisons of the sequences flanking the Sacm2L and Ring1 genes in rat, human, and mouse suggest that the class I gene-containing region was inserted between these genes in rat and mouse at a similar position. Thus, this insertion is likely to have occurred in a common ancestor of these rodents, although the presence of a site particularly permissive for insertions cannot be excluded.  相似文献   

8.
A series of novel 2-butyl-4-chloro-1-methylimidazole embedded aryl and heteroaryl derived chalcones and pyrazoles were synthesized and evaluated for their angiotensin converting enzyme (ACE) inhibitory activity. The condensation of 2-butyl-4-chloro-1-methylimidazole-5-carboxaldehyde with various aryl and heteroaryl methyl ketones in the presence of 10% aqueous NaOH in methanol proceeded efficiently to give the respective chalcones in very good yields. Further, the reaction of chalcones with hydrazine hydrate in acetic acid gave substituted pyrazole analogues. Screening all 36 new compounds using ACE inhibition assay, resulted chalcones with better ACE inhibitory activity compared to the respective pyrazole analogues. Among the chalcones 4a-r, three compounds, (E)-3-(2-butyl-4-chloro-1-methyl-1H-imidazol-5-yl)-1-(5-chlorothiophen-2-yl)prop-2-enone 4i, (E)-3-(2-butyl-4-chloro-1-methyl-1H-imidazol-5-yl)-1-(1H-pyrrol-2-yl)prop-2-enone 4l, (E)-3-(2-butyl-4-chloro-1-methyl-1H-imidazol-5-yl)-1-(dibenzo[b,d] thiophen-2-yl)prop-2-enone 4q were resulted as most active ACE inhibitors with IC(50) of 3.60 μM, 2.24 μM, and 2.68 μM, respectively.  相似文献   

9.
Epithelial‐mesenchymal transition (EMT) and renal fibrosis are closely involved in chronic kidney disease. Inhibition of histone deacetylase (HDAC) has an anti‐fibrotic effect in various diseases. However, the pathophysiological role of isoform‐specific HDACs or class‐selective HDACs in renal fibrosis remains unknown. Here, we investigated EMT markers and extracellular matrix (ECM) proteins in a human proximal tubular cell line (HK‐2) by using HDAC inhibitors or by knockdown of class I HDACs (HDAC1, 2, 3 and 8). Trichostatin A (TSA), MS275, PCI34051 and LMK235 inhibited ECM proteins such as collagen type I or fibronectin in transforming growth factor β1 (TGF‐β1)‐induced HK2 cells. However, restoration of TGF‐β1‐induced E‐cadherin down‐regulation was only seen in HK‐2 cells treated with TSA or MS275, but not with PCI34051, whereas TGF‐β1‐induced N‐cadherin expression was not affected by the inhibitors. ECM protein and EMT marker levels were prevented or restored by small interfering RNA transfection against HDAC8, but not against other class I HDACs (HDAC1, 2 and 3). E‐cadherin regulation is mediated by HDAC8 expression, but not by HDAC8 enzyme activity. Thus, class I HDACs (HDAC1, 2, 3 and 8) play a major role in regulating ECM and EMT, whereas class IIa HDACs (HDAC4 and 5) are less effective.  相似文献   

10.
Inhibitors of dipeptidyl peptidase IV (DPP-IV) have been shown to be effective treatments for type 2 diabetes. A series of beta-aminoacyl-containing cyclic hydrazine derivatives were synthesized and evaluated as DPP-IV inhibitors. One member of this series, (R)-3-amino-1-(2-benzoyl-1,2-diazepan-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one (10f), showed potent in vitro activity, good selectivity and in vivo efficacy in mouse models. Also, the binding mode of compound 10f was determined by X-ray crystallography.  相似文献   

11.
The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (compound 1) has in vivo activity against the apicomplexan parasites Toxoplasma gondii and Eimeria tenella in animal models. The presumptive molecular target of this compound in E. tenella is cyclic GMP-dependent protein kinase (PKG). Native PKG purified from T. gondii has kinetic and pharmacologic properties similar to those of the E. tenella homologue, and both have been functionally expressed as recombinant proteins in T. gondii. Computer modeling of parasite PKG was used to predict catalytic site amino acid residues that interact with compound 1. The recombinant laboratory-generated mutants T. gondii PKG T761Q or T761M and the analogous E. tenella T770 alleles have reduced binding affinity for, and are not inhibited by, compound 1. By all other criteria, PKG with this class of catalytic site substitution is indistinguishable from wild-type enzyme. A genetic disruption of T. gondii PKG can only be achieved if a complementing copy of PKG is provided in trans, arguing that PKG is an essential protein. Strains of T. gondii, disrupted at the genomic PKG locus and dependent upon the T. gondii T761-substituted PKGs, are as virulent as wild type in mice. However, unlike mice infected with wild-type T. gondii that are cured by compound 1, mice infected with the laboratory-generated strains of T. gondii do not respond to treatment. We conclude that PKG represents the primary molecular target responsible for the antiparasitic efficacy of compound 1.  相似文献   

12.
A new series of 1,3-dioxane-2-carboxylic acid derivatives was synthesized and evaluated for agonist activity at human peroxisome proliferator-activated receptor (PPAR) subtypes. Structure-activity relationship studies led to the identification of 2-methyl-c-5-[4-(5-methyl-2-phenyl-1,3-oxazol-4-yl)butyl]-1,3-dioxane-r-2-carboxylic acid 4b as a potent PPARalpha agonist with high subtype selectivity at human receptor subtypes. This compound exhibited a substantial hypolipidemic effect in type 2 diabetic KK-A(y) mice.  相似文献   

13.
Histone deacetylases (HDACs) are validated targets for the development of anticancer drugs in epigenetics. In the discovery of novel HDAC inhibitors with anticancer potency, the 5-chloro-4-((substituted phenyl)amino)pyrimidine fragment is assembled as a cap group into the structure of HDAC inhibitors. The SAR revealed that presence of small groups (such as methoxy substitution) is beneficial for the HDAC inhibitory activity. In the enzyme inhibitory selectivity test, compound L20 exhibited class I selectivity with IC50 values of 0.684 µM (selectivity index of >1462), 2.548 µM (selectivity index of >392), and 0.217 µM (selectivity index of >4608) against HDAC1, HDAC2 and HDAC3 compared with potency against HDAC6 (IC50 value of >1000 µM), respectively. In the antiproliferative assay, compound L20 showed both hematological and solid cancer inhibitory activities. In the flow cytometry, L20 promoted G0/G1 phase cell cycle arrest and apoptosis of K562 cells.  相似文献   

14.
15.
16.
Perturbation of histone acetyl-transferase (HAT) activity is implicated in the pathology of polyglutamine diseases, and suppression of the counteracting histone deacetylase (HDAC) proteins has been proposed as a therapeutic candidate for these intractable disorders. Meanwhile, it is not known whether mutant polyglutamine disease protein affects the HDAC activity in declining neurons, though the answer is essential for application of anti-HDAC drugs for polyglutamine diseases. Here, we show the effect of mutant huntingtin (htt) protein on the expression and activity of HDAC proteins in rat primary cortical neurons as well as in human Huntington's disease (HD) brains. Our findings indicate that expression and activity of HDAC proteins are not repressed by mutant htt protein. Furthermore, expression of normal and mutant htt protein slightly increased HDAC activity although the effects of normal and mutant htt were not remarkably different. In human HD cerebral cortex, HDAC5 immunoreactivity was increased in the nucleus of striatal and cortical neurons, suggesting accelerated nuclear import of this class II HDAC. Meanwhile, western blot and immunohistochemical analyses showed no remarkable change in the expression of class I HDAC proteins such as HDAC1 and HDCA8. Collectively, retained activity in affected neurons supports application of anti-HDAC drugs to the therapy of HD.  相似文献   

17.
An important epigenetic modification in Huntington’s disease (HD) research is histone acetylation, which is regulated by histone acetyltransferase and histone deacetylase (HDAC) enzymes. HDAC inhibitors have proven effective in HD model systems, and recent work is now focused on functional dissection of the individual HDAC enzymes in these effects. Histone deacetylase 3 (HDAC3), a member of the class I subfamily of HDACs, has previously been implicated in neuronal toxicity and huntingtin-induced cell death. Hence, we tested the effects of RGFP966 ((E)-N-(2-amino-4-fluorophenyl)-3-(1-cinnamyl-1H-pyrazol-4-yl)acrylamide), a benzamide-type HDAC inhibitor that selectively targets HDAC3, in the N171-82Q transgenic mouse model of HD. We found that RGFP966 at doses of 10 and 25 mg/kg improves motor deficits on rotarod and in open field exploration, accompanied by neuroprotective effects on striatal volume. In light of previous studies implicating HDAC3 in immune function, we measured gene expression changes for 84 immune-related genes elicited by RGFP966 using quantitative PCR arrays. RGFP966 treatment did not cause widespread changes in cytokine/chemokine gene expression patterns, but did significantly alter the striatal expression of macrophage migration inhibitory factor (Mif), a hormone immune modulator associated with glial cell activation, in N171-82Q transgenic mice, but not WT mice. Accordingly, RGFP966-treated mice showed decreased glial fibrillary acidic protein (GFAP) immunoreactivity, a marker of astrocyte activation, in the striatum of N171-82Q transgenic mice compared to vehicle-treated mice. These findings suggest that the beneficial actions of HDAC3 inhibition could be related, in part, with lowered Mif levels and its associated downstream effects.  相似文献   

18.
The synthesis of a series of 5-phenyl substituted 1-methyl-2-pyridones (I) and 4'-substituted biphenyl-4-carboxylic acids (II) as novel A-C ring steroidomimetic inhibitors of 5alpha-reductase (5alphaR) is described. Compounds 1-4 (I) were synthesized by palladium catalyzed cross coupling (Ishikura) reaction between diethyl(3-pyridyl)borane and aryl halides (1b-4b) followed by alpha-oxidation with sodium ferrocyanate of the 1-methyl-pyridinium salt. Inhibitors II (5-18) were obtained either by two successive Friedel-Crafts acylations from biphenyl (5a-10a) followed by saponification to yield the corresponding carboxylic acids (5-10) or by Suzuki cross coupling reaction to give the 4'-substituted biphenyl-4-carbaldehydes 11a-18a. The latter compounds were subjected to a Lindgren oxidation to yield compounds 11-18. The compounds were tested for inhibitory activity toward human and rat 5alphaR1 and 2. The test compounds inhibited 5alphaR, showing a broad range of inhibitory potencies. The best compound in series I was the N-(dicyclohexyl)-4-(1,2-dihydro-1-methyl-2-oxopyrid-5-yl)benzamide 4 exhibiting an IC(50) value for the human type 2 enzyme of 10 microM. In series II, the most active compound toward human type 2 isozyme was the 4'-(dicyclohexyl)acetyl-4-biphenyl carboxylic acid (10; IC(50)=220nM). Both series showed only marginal activity toward the human type 1 isozyme. In conclusion, the biphenyl carboxylic acids (II) are more appropriate for 5alphaR inhibition than the 5-phenyl-1-methyl-2-pyridones (I). Especially the 4'-carbonyl compounds 5-10 represent new lead structures for the development of novel human type 2 inhibitors.  相似文献   

19.
The synthesis and anti-inflammatory activity of 4,5-dihydroxy-3-methyl-1H-pyrazolo[3,4-c]pyridazine (4), 4,5-dichloro-3-methyl-1H-pyrazolo[3,4-c]pyridazine (5), 4,-benzoyloxy-3-methyl-1-benzoyl-1H-pyrazolo[3,4-c]pyridazin-5yl benzoate (6), 3-methyl-N4,N5-bis(4-methylphenyl)-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (7), 4[[5-(4-carboxyanilino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4yl]amino]benzoic acid (8), N-[5-(benzoylamino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4-yl]benzamide (9) and 3-methyl-N4,N5-bis[4-(1H-benzimidazol-2yl)phenyl]-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (10) are being reported.  相似文献   

20.
A class of biaryl benzamides was identified and optimized as selective HDAC1&2 inhibitors (SHI-1:2). These agents exhibit selectivity over class II HDACs 4-7, as well as class I HDACs 3 and 8; providing examples of selective HDAC inhibitors for the HDAC isoforms most closely associated with cancer. The hypothesis for the increased selectivity is the binding of a pendant aromatic group in the internal cavity of the HDAC1&2 enzymes. SAR development based on an initial lead led to a series of potent and selective inhibitors with reduced off-target activity and tumor growth inhibition activity in a HCT-116 xenograft model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号