首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid method for the preparation of highly purified cholinergic nerve endings from the electric organ of Torpedo is described. The endings retain their cytoplasmic components, as shown by biochemical and morphological observations. The homogeneity of these synaptosomes make them a useful tool for further studies.  相似文献   

2.
Pure cholinergic nerve endings (synaptosomes) were isolated from the electric organ of Torpedo by a rapid procedure. These synaptosomes are approximately 3 micron in diameter. They contain an occasional mitochondrion, numerous synaptic vesicles, and sometimes an active zone is observed. No postynaptic membrane attachment is found. This nerve ending fraction is extremely pure as shown by morphological controls and biochemical data. It is rich in choline acetyltransferase (450 nmol/h per mg protein) and acetylcholine (ACh) (130 nmol/mg protein). The isolated endings retain their cytoplasmic components and they synthesize ACh and are stable in vitro for several hours, as shown by biochemical measurements and morphological analysis.  相似文献   

3.
A presynaptic plasma membrane fraction was purified after subfractionation of pure cholinergic synaptosomes prepared from Torpedo electric organ. Two 67 kdalton proteins were highly enriched in the synaptosomal plasma membrane (SPM): the hydrophobic form of AChE and a protein against which we raised a monoclonal antibody (C1–8). These two proteins exhibit similar biochemical properties: both exist as disulphide linked dimers with the same molecular weight; they are glycoproteins binding Concanavalin A; they are exposed on the external surface of the SPM and detached as almost entire molecules by Pronase. Nevertheless, using the C1–8 monoclonal antibody, it was possible to show that they are different proteins. The C1–8 binding protein appears to be specific for the SPM in Torpedo electric organ since it was not detected in plasma membranes from the electroplaque, the electric nerve trunks or the electric lobe. The hydrophobic AChE and the C1–8 binding protein appear therefore to be useful markers of the SPM. Pronase treatment of intact synaptosomes removes most of the ectocellularly exposed proteins of the SPM, which amount to 35% of the SPM protein. Presynaptic AChE and the C1–8 binding protein are detached. But ACh release can still be induced by depolarization of the Pronase treated synaptosomes. This demonstrates that the two 67 kdalton presynaptic proteins are not directly involved in the release of the neurotransmitter.  相似文献   

4.
Botulinum neurotoxin type A (BoNTx) inhibits the release of acetylcholine (ACh) from Torpedo electric organ synaptosomes. We have studied several biochemical and morphological aspects in order to characterize the molecular interactions of BoNTx intoxication in our preparation. 1. We are describing for the first time an electrophoretic band from cholinergic presynaptic plasma membrane (PSPM) that is recognized by 125I-BoNTx as a putative BoNTx receptor. 2. Furthermore we describe direct interaction of botulinum toxin-gold complexes with synaptic vesicles through the three-step model of the BoNTx intoxication.  相似文献   

5.
Viable synaptosomes from the electric organ of Torpedo have been prepared and partially purified. The synaptosomes contain about 100 fold more acetylcholine (Ach) than do mammalian synaptosomes, synaptic vesicles and mitochondria. The Torpedo synaptosomes release Ach by K depolarization in the presence of Ca ions, and manifest an ionophore-mediated Ca-dependent Ach release. These results demonstrate that the synaptosomes contain the neurosecretion apparatus in a functional viable state. Since this preparation uniquely contains only one neurotransmission system (cholinergic), it is most suitable for structural and functional investigations of neuro transmission.  相似文献   

6.
A high acetylcholinesterase (AChE) activity was found associated with pure cholinergic synaptosomes prepared from Torpedo electric organ. This activity was bound to the presynaptic plasma membrane upon subfractionation on sucrose density gradients. It was not solubilized in the presence of 2 M MgCl2 but in the presence of Triton X 100. This presynaptic AChE activity corresponded to a hydrophobic form of the enzyme with a sedimentation coefficient of 5.5 S in our conditions. More than 80% of the AChE activity of intact synaptosomes was externally oriented. The presynaptic AChE activity could represent as much as 25% of the total activity in Torpedo electric organ.  相似文献   

7.
The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synaptosomes of Torpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5'-adenylyl imidodiphosphate as substrate and 5'-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of lead pyrophosphate precipitate.  相似文献   

8.
DETERMINATION OF ACh CONCENTRATION IN TORPEDO SYNAPTOSOMES   总被引:8,自引:5,他引:3  
Abstract— The concentrations of ACh and ATP of Torpedo electric organ synaptosomes were directly measured and found to be respectively 20.0 ± 6.4 mM and 3.1 ± 0.6 mM. The synaptosomal volume was estimated by a classical space marker technique using 14C inulin and tritiated water. After counting the synaptosomes in an haemocytometer (and knowing their volume), a mean diameter of 3.5 p was calculated. The use of these classical techniques was rendered possible because of the homogeneity of the fraction and the large size of Torpedo synaptosomes.  相似文献   

9.
Proteoliposomes obtained from the mediatophore, a purified Torpedo electric organ nerve terminals protein, and endogenous lipids were used for a study of calcium-induced release of acetylcholine and freeze-fracture electron microscopy. Large intramembrane particles were induced by the influx of calcium into proteoliposomes, as previously observed for synaptosomes or stimulated electric organ nerve terminals. The involvement of mediatophore in a calcium dependent acetylcholine translocation seems therefore to be related to the occurrence of a category of intramembrane particles in the course of the release process.  相似文献   

10.
Viablse, purely cholinergic synaptosomes were prepared from the electric organ of Torpedo ocellata and partially purified by differential and sucrose density centrifugation. The synaptosomes contain acetylcholine (ACh), synaptic vesicles, cytoplasmic markers and mitochondria. No adherent postsynaptic membranes were detected. K+ depolarization as well as the ionophore A23187 mediate Ca2+ permeation into the synaptosomes and the consequent release of ACh. Mg2+ does not evoke ACh release whereas Sr2+ and Ba2+ can replace Ca2+ in evoking K+ depolarization induced ACh secretion. In accordance with the calcium hypothesis of stimulus–secretion coupling, both K+ depolarization and the ionophore A23187 seem to mediate the release of the same population of ACh molecules. The mode of action of the ionophore X537A differs from that of A23187. X537A acts independently of Ca2+ and induces the release of a larger fraction of the ACh contained in the fractionated nerve terminals. These results demonstrate that the Torpedo synaptosomes contain the neurosecretion apparatus in a functional active state. This preparation extends the utility of synaptosomes for structural and functional biochemical studies of neurotransmission, as it uniquely contains only one neurosecretion system (cholinergic).  相似文献   

11.
《The Journal of cell biology》1985,101(5):1757-1762
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.  相似文献   

12.
Exposure of synaptosomes isolated from the electric organ of Torpedo marmorata to conditions that promote the release of acetylcholine does not cause the co-release of a vesicle specific proteoglycan. Proteoglycan within synaptosomes is quite stable during various incubation conditions as measured by immune dot blotting. Isolated vesicles from Torpedo also retain their proteoglycan immunoreactivity when exposed to a variety of incubation conditions. Lysis of vesicles in H2O, treatment with pH 11.5 buffer, or exposure to high ionic strength (2 M KCl) results in the loss of acetylcholine or ATP while the proteoglycan is retained by vesicle membranes. Only treatment with Nonidet P-40 releases proteoglycan from vesicles or synaptosomes and free proteoglycan immunoreactivity is then susceptible to degradation by trypsin or heparinase. These results suggest that the proteoglycan is an integral component of vesicle membranes and is at least in the synaptosomal preparation not subject to extensive co-release with acetylcholine or ATP.  相似文献   

13.
We report here the effects of Botulinum Toxin type A on the release of ATP and Acetylcholine from Torpedo electric organ synaptosomes. Our results show that Botulinum Toxin type A inhibits specifically the K+-induced release of Acetylcholine from synaptosomes without affecting the release of ATP. Membrane potential and calcium uptake into cholinergic nerve terminals are not modified after Botulinum Toxin poisoning. It is suggested that either most of the ATP released during the depolarization of the cholinergic synaptosomes does not originate from cholinergic synaptic vesicles or that there are two populations of synaptic vesicles, Acetylcholine-enriched synaptic vesicles and ATP-enriched synaptic vesicles. However, the possibility that the ACh and ATP released could come from different intrasynaptosomal compartments cannot be excluded.  相似文献   

14.
A protein that binds to membranes in a calcium-dependent manner between calcium concentrations of 10(-5) and 10(-6) M has been isolated in large amounts (20 mg/kg tissue) from the entirely cholinergic electric organ of Torpedo marmorata. The protein bound reversibly to membrane fractions in a calcium-specific and saturable manner. The protein also bound to lipids isolated from Torpedo electric organ and to clathrin-coated vesicles prepared from pig brain. The protein bound to a Triton X-100-sensitive site. It had an apparent subunit molecular weight of 32,000 by polyacrylamide gel electrophoresis and of 35,900 by amino acid analysis; a broad isoelectric range of 4.8 to 5.5; and 27% of its amino acids after hydrolysis were observed to be aspartic and glutamic acids. Synaptosomes derived from electric organ were enriched in the protein which is probably localised within the nerve ending. It was localised in the synaptic region of the electric organ by means of immunofluorescence. In the electric lobe, discrete patches of fluorescence were seen within the cell bodies that innervate the electric organ. The protein may be involved in the recognition of membranes within the cholinergic neurone. Proteins with similar purification properties were found in all tissues investigated so far, and polypeptides of subunit molecular weight 32,000 were identified in bovine adrenal medulla and guinea pig brain synaptosomes.  相似文献   

15.
Summary The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synapto-somes ofTorpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5′-adenylyl imidodiphosphate as substrate and 5′-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of leed pyrophosphate precipitate.  相似文献   

16.
Sodium-dependent binding of [3H]hemicholinium-3 was observed to be 10-fold higher with presynaptic membranes from the electric organ than with electroplaque membranes and this binding site copurified with synaptosomal membranes. The KD for specific [3H]hemicholinium-3 binding was found to be 31 +/- 4 nM and the Bmax, 5.0 +/- 0.2 pmol/mg protein; a Ki of 16 nM was estimated for hemicholinium-3 as a competitive inhibitor of high-affinity choline transport in electric organ synaptosomes. Choline and choline analogues were equally potent as inhibitors of [3H]choline uptake and [3H]hemicholinium-3 binding. Tubocurarine and oxotremorine also inhibited uptake and binding, but carbachol was without effect in both tests. These findings suggest that [3H]hemicholinium binds to the high-affinity choline transporter present at the cholinergic nerve terminal membrane. A comparison of maximal velocities for choline transport and the maximal number of hemicholinium-3 binding sites indicated that the high-affinity choline transporter has an apparent turnover number of about 3s-1 at 20 degrees C under resting conditions. The high transport rates observed in electric organ synaptosomes are likely due to the high density of high-affinity choline transporters in this tissue, estimated on the basis of [3H]hemicholinium-3 binding to be of the order of 100/micron2 of synaptosomal membrane.  相似文献   

17.
Pure cholinergic synaptosomes from the electric organ of Torpedo marmorata have a saturable adenosine uptake mechanism (calculated Km, 3 μM; Vmax, 24 pmol/min/mg prot.). In this preparation, high intracellular calcium elicited by increasing external calcium concentration, potassium depolarization, sodium-calcium exchange inhibition or divalent cation ionophore A23187 action, inhibits adenosine uptake into synaptosomes. The data presented in this paper are consistent with the interpretation that high intracellular calcium participates in the regulation of the high-affinity adenosine uptake system.  相似文献   

18.
《The Journal of cell biology》1983,97(6):1737-1744
The crude extract of venom glands of the polychaete annelid Glycera convoluta triggers a large Ca2+-dependent acetylcholine release from both frog motor nerve terminals and Torpedo electric organ synaptosomes. This extract was partially purified by Concanavalin A affinity chromatography. The biological activity was correlated in both preparations to a 300,000-dalton band, as shown by gel electrophoresis. This confirmed previous determinations obtained with chromatographic methods. This glycoprotein binds to presynaptic but not postsynaptic plasma membranes isolated from Torpedo electric organ. Pretreatment of intact synaptosomes by pronase abolished both the binding and the venom- induced acetylcholine release without impairing the high K+-induced acetylcholine release. Pretreatment of nerve terminal membranes by Concanavalin A similarly prevented the binding and the biological response. Binding to Torpedo membranes was still observed in the presence of EGTA. An antiserum directed to venom glycoproteins inhibited the neurotoxin so we could directly follow its binding to the presynaptic membrane. Glycera convoluta neurotoxin has to bind to a ectocellularly oriented protein of the presynaptic terminal to induce transmitter release.  相似文献   

19.
Acetyl-CoA synthetase activity was shown to be present in pure cholinergic synaptosomes from electric organ of Torpedo marmorata. After osmotic disruption of synaptosomes a substantial part of the activity was recovered in the soluble fraction. The effects of varying pH and increasing K+ concentrations on the synaptosomal enzyme activity were shown to differ from those observed with the mitochondrial enzyme. Whereas this latter enzyme showed optimal activity above pH 8.5, and a maximal activation in the presence of 120 mM-K+, the synaptosomal enzyme exhibited an optimal activity at pH 7.9 and a moderate K+ stimulatory effect with an optimal concentration of 30 mM.  相似文献   

20.
The release of acetylcholine (ACh) from instantly frozen Torpedo electric organ synaptosomes in the course of stimulation is systematically associated with an increase in the number of large intramembrane particles counted on freeze-fracture replicas. The drug cetiedil, which is a potent inhibitor of ACh release, also blocks the increase in the number of large particles. The blockage was studied either after ionophore A 23187 or Glycera neurotoxin action in the presence of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号