共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial biofilms are complex microbial communities that are common in nature and are being recognized increasingly as an important determinant of bacterial virulence. However, the structural determinants of bacterial aggregation and eventual biofilm formation have been poorly defined. In Gram‐negative bacteria, a major subgroup of extracellular proteins called self‐associating autotransporters (SAATs) can mediate cell–cell adhesion and facilitate biofilm formation. In this study, we used the Haemophilus influenzae Hap autotransporter as a prototype SAAT to understand how bacteria associate with each other. The crystal structure of the H. influenzae HapS passenger domain (harbouring the SAAT domain) was determined to 2.2 Å by X‐ray crystallography, revealing an unprecedented intercellular oligomerization mechanism for cell–cell interaction. The C‐terminal SAAT domain folds into a triangular‐prism‐like structure that can mediate Hap–Hap dimerization and higher degrees of multimerization through its F1–F2 edge and F2 face. The intercellular multimerization can give rise to massive buried surfaces that are required for overcoming the repulsive force between cells, leading to bacterial cell–cell interaction and formation of complex microcolonies. 相似文献
2.
Esposito D Petrovic A Harris R Ono S Eccleston JF Mbabaali A Haq I Higgins CF Hinton JC Driscoll PC Ladbury JE 《Journal of molecular biology》2002,324(4):841-850
H-NS plays a role in condensing DNA in the bacterial nucleoid. This 136 amino acid protein comprises two functional domains separated by a flexible linker. High order structures formed by the N-terminal oligomerization domain (residues 1-89) constitute the basis of a protein scaffold that binds DNA via the C-terminal domain. Deletion of residues 57-89 or 64-89 of the oligomerization domain precludes high order structure formation, yielding a discrete dimer. This dimerization event represents the initial event in the formation of high order structure. The dimers thus constitute the basic building block of the protein scaffold. The three-dimensional solution structure of one of these units (residues 1-57) has been determined. Activity of these structural units is demonstrated by a dominant negative effect on high order structure formation on addition to the full length protein. Truncated and site-directed mutant forms of the N-terminal domain of H-NS reveal how the dimeric unit self-associates in a head-to-tail manner and demonstrate the importance of secondary structure in this interaction to form high order structures. A model is presented for the structural basis for DNA packaging in bacterial cells. 相似文献
3.
Copper is an essential trace element to life and particularly plays a pivotal role in the physiology of aerobic organisms. The Cut protein family is associated with copper homeostasis and involved in uptake, storage, delivery, and efflux of copper. CutC is a member of the Cut family and is suggested to be involved in efflux trafficking of cuprous ion. We report here the biochemical and structural characterization of human CutC (hCutC). hCutC can bind Cu(I) with a stoichiometry of 1:1 and an apparent dissociation constant of 15.5 ± 2.8 μM. hCutC assumes a typical TIM-barrel fold and forms a tetramer in both crystal structure and solution which is different from the dimeric architecture of the bacterial CutC. Structure analysis and sequence comparison of CutC proteins from different species reveal two strictly conserved Cys residues on the inner surface of the C-terminal end of the TIM-barrel. Mutations of the two Cys residues can significantly impair the binding ability of hCutC with Cu(I). Our results suggest that hCutC functions as an enzyme with Cu(I) as a cofactor rather than a copper transporter and the potential Cu(I)-binding site consists of the two Cys residues and other conserved residues in the vicinity. 相似文献
4.
Crystal structure of the oligomerization domain of NSP4 from rotavirus reveals a core metal-binding site 总被引:6,自引:0,他引:6
Bowman GD Nodelman IM Levy O Lin SL Tian P Zamb TJ Udem SA Venkataraghavan B Schutt CE 《Journal of molecular biology》2000,304(5):861-871
During the maturation of rotaviral particles, non-structural protein 4 (NSP4) plays a critical role in the translocation of the immature capsid into the lumen of the endoplasmic reticulum. Full-length NSP4 and a 22 amino acid peptide (NSP4(114-135)) derived from this protein have been shown to induce diarrhea in young mice in an age-dependent manner, and may therefore be the agent responsible for rotavirally-induced symptoms. We have determined the crystal structure of the oligomerization domain of NSP4 which spans residues 95 to 137 (NSP4(95-137)). NSP4(95-137) self-associates into a parallel, tetrameric coiled-coil, with the hydrophobic core interrupted by three polar layers occupying a and d-heptad positions. Side-chains from two consecutive polar layers, consisting of four Gln123 and two of the four Glu120 residues, coordinate a divalent cation. Two independent structures built from MAD-phased data indicated the presence of a strontium and calcium ion bound at this site, respectively. This metal-binding site appears to play an important role in stabilizing the homo-tetramer, which has implications for the engagement of NSP4 as an enterotoxin. 相似文献
5.
Gerber R Tahiri-Alaoui A Hore PJ James W 《Protein science : a publication of the Protein Society》2008,17(3):537-544
Intermediate states are key to understanding the molecular mechanisms governing protein misfolding. The human prion protein (PrP) can follow various misfolding pathways, and forms a soluble beta-sheet-rich oligomer under acidic, mildly denaturing, high salt conditions. Here we describe a fast conformational switch from the native alpha-monomer to monomeric intermediate states under oligomer-forming conditions, followed by a slower oligomerization process. We observe a pH dependence of the secondary structure of these intermediate forms, with almost native-like alpha-helical secondary structure at pH 4.1 and predominantly beta-sheet characteristics at pH 3.6. NMR spectroscopy differentiates these intermediate states from the native protein and indicates dynamic rearrangements of secondary structure elements characteristic of a molten globule. The alpha-helical intermediate formed at pH 4.1 can convert to the beta-sheet conformation at pH 3.6 but not vice versa, and neither state can be reconverted to an alpha-monomer. The presence of methionine rather than valine at codon 129 accelerates the rate of oligomer formation from the intermediate state. 相似文献
6.
Nithianantham S Xu M Yamada M Ikegami A Shoham M Han YW 《The Journal of biological chemistry》2009,284(6):3865-3872
Many bacterial appendages have filamentous structures, often composed of repeating monomers assembled in a head-to-tail manner. The mechanisms of such linkages vary. We report here a novel protein oligomerization motif identified in the FadA adhesin from the Gram-negative bacterium Fusobacterium nucleatum. The 2.0 angstroms crystal structure of the secreted form of FadA (mFadA) reveals two antiparallel alpha-helices connected by an intervening 8-residue hairpin loop. Leucine-leucine contacts play a prominent dual intra- and intermolecular role in the structure and function of FadA. First, they comprise the main association between the two helical arms of the monomer; second, they mediate the head-to-tail association of monomers to form the elongated polymers. This leucine-mediated filamentous assembly of FadA molecules constitutes a novel structural motif termed the "leucine chain." The essential role of these residues in FadA is corroborated by mutagenesis of selected leucine residues, which leads to the abrogation of oligomerization, filament formation, and binding to host cells. 相似文献
7.
He H Ding Y Bartlam M Sun F Le Y Qin X Tang H Zhang R Joachimiak A Liu J Zhao N Rao Z 《Journal of molecular biology》2003,325(5):1019-1030
Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55A resolution. The binary complex forms a characteristic "V" shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members. 相似文献
8.
《Biochimica et Biophysica Acta - Proteins and Proteomics》2020,1868(2):140324
Excitation energy migration via homo-Förster resonance energy transfer (homo-FRET) can serve as an intermolecular proximity ruler within complex biomolecular assemblies. Here we present a unique case to demonstrate that energy migration can be a novel and sensitive readout to capture the membrane-mediated misfolding and oligomerization of the human prion protein (PrP), which is known to undergo an aberrant conformational conversion from an α-helical form into a self-propagating aggregated β-rich state causing deadly transmissible neurodegenerative diseases. Using site-specific energy migration studies by monitoring steady-state and time-resolved fluorescence anisotropy of fluorescently-tagged PrP, we elucidate the molecular details of lipid membrane-induced oligomers. We show that the intrinsically disordered N-terminal segment is critical for lipid-induced conformational sequestration of PrP into higher-order, β-rich oligomeric species that exhibit membrane permeabilization. Our results revealed that the N-terminal regions constitute the central core of the oligomeric architecture, whereas the distal C-terminal ends participate in peripheral association with the lipid membrane. Our study will find applications in the sensitive detection and in the structural characterization of membrane-induced protein misfolding and aggregation in a variety of deadly amyloid diseases. 相似文献
9.
Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. 总被引:9,自引:0,他引:9
Cytosolic phospholipase A2 initiates the biosynthesis of prostaglandins, leukotrienes, and platelet-activating factor (PAF), mediators of the pathophysiology of asthma and arthritis. Here, we report the X-ray crystal structure of human cPLA2 at 2.5 A. cPLA2 consists of an N-terminal calcium-dependent lipid-binding/C2 domain and a catalytic unit whose topology is distinct from that of other lipases. An unusual Ser-Asp dyad located in a deep cleft at the center of a predominantly hydrophobic funnel selectively cleaves arachidonyl phospholipids. The structure reveals a flexible lid that must move to allow substrate access to the active site, thus explaining the interfacial activation of this important lipase. 相似文献
10.
Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space. DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase. To gain insight into disulfide bond formation, we determined the crystal structure of the DsbB-DsbA complex at 3.7 A resolution. The structure of DsbB revealed four transmembrane helices and one short horizontal helix juxtaposed with Cys130 in the mobile periplasmic loop. Whereas DsbB in the resting state contains a Cys104-Cys130 disulfide, Cys104 in the binary complex is engaged in the intermolecular disulfide bond and captured by the hydrophobic groove of DsbA, resulting in separation from Cys130. This cysteine relocation prevents the backward resolution of the complex and allows Cys130 to approach and activate the disulfide-generating reaction center composed of Cys41, Cys44, Arg48, and ubiquinone. We propose that DsbB is converted by its specific substrate, DsbA, to a superoxidizing enzyme, capable of oxidizing this extremely oxidizing oxidase. 相似文献
11.
Zhang Y Swietnicki W Zagorski MG Surewicz WK Sönnichsen FD 《The Journal of biological chemistry》2000,275(43):33650-33654
Prion propagation in transmissible spongiform encephalopathies involves the conversion of cellular prion protein, PrP(C), into a pathogenic conformer, PrP(Sc). Hereditary forms of the disease are linked to specific mutations in the gene coding for the prion protein. To gain insight into the molecular basis of these disorders, the solution structure of the familial Creutzfeldt-Jakob disease-related E200K variant of human prion protein was determined by multi-dimensional nuclear magnetic resonance spectroscopy. Remarkably, apart from minor differences in flexible regions, the backbone tertiary structure of the E200K variant is nearly identical to that reported for the wild-type human prion protein. The only major consequence of the mutation is the perturbation of surface electrostatic potential. The present structural data strongly suggest that protein surface defects leading to abnormalities in the interaction of prion protein with auxiliary proteins/chaperones or cellular membranes should be considered key determinants of a spontaneous PrP(C) --> PrP(Sc) conversion in the E200K form of hereditary prion disease. 相似文献
12.
Cappai R Stewart L Jobling MF Thyer JM White AR Beyreuther K Collins SJ Masters CL Barrow CJ 《Biochemistry》1999,38(11):3280-3284
A considerable body of data supports the model that the infectious agent (called a prion) which causes the transmissible spongiform encephalopathies is a replicating polypeptide devoid of nucleic acid. Prions are believed to propagate by changing the conformation of the normal cellular prion protein (PrPc) into an infectious isoform without altering the primary sequence. Proteins equivalent to the mature form of the wild-type mouse prion protein (residues 23-231) or with a mutation equivalent to that associated with Gerstmann-Straüssler-Scheinker disease (proline to leucine at codon 102 in human; 101 in mouse) were expressed in E. coli. The mutation did not alter the relative proteinase K susceptibility properties of the mouse prion proteins. The wild-type and mutant proteins were analyzed by circular dichroism under different pH and temperature conditions. The mutation was associated with a decrease in alpha-helical content, while the beta-sheet content of the two proteins was unchanged. This suggests the mutation, while altering the secondary structure of PrP, is not sufficient to induce proteinase K resistance and could therefore represent an intermediate isoform along the pathway toward prion formation. 相似文献
13.
14.
15.
Conformational changes in the prion protein cause transmissible spongiform encephalopathies, also referred to as prion diseases. In its native state, the prion protein is innocuous (PrPC), but it can misfold into a neurotoxic and infectious isoform (PrPSc). The full-length cellular form of the prion protein consists of residues 23-230, with over half of the sequence belonging to the unstructured N-terminal domain and the remaining residues forming a small globular domain. During misfolding and aggregation, portions of both the structured and unstructured domains are incorporated into the aggregates. After limited proteolysis by proteinase K, the most abundant fragment from brain-derived prion fibrils is a 141-residue fragment composed of residues 90-230. Here we describe simulations of this fragment of the human prion protein at low pH, which triggers misfolding, and at neutral pH as a control. The simulations, in agreement with experiment, show that this biologically and pathologically relevant prion construct is stable and native-like at neutral pH. In contrast, at low pH the prion protein is destabilized via disruption of critical long-range salt bridges. In one of the low pH simulations this destabilization resulted in a conformational transition to a PrPSc-like isoform consistent with our previous simulations of a smaller construct. 相似文献
16.
Katarzyna M. OsieckaHanna Nieznanska Krzysztof J. SkowronekJolanta Jozwiak Krzysztof Nieznanski 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(10):1845-1853
In previous studies we have demonstrated that prion protein (PrP) interacts with tubulin and disrupts microtubular cytoskeleton by inducing tubulin oligomerization. These observations may explain the molecular mechanism of toxicity of cytoplasmic PrP in transmissible spongiform encephalopathies (TSEs). Here, we check whether microtubule associated proteins (MAPs) that regulate microtubule stability, influence the PrP-induced oligomerization of tubulin. We show that tubulin preparations depleted of MAPs are more prone to oligomerization by PrP than those containing traces of MAPs. Tau protein, a major neuronal member of the MAPs family, reduces the effect of PrP. Importantly, phosphorylation of Tau abolishes its ability to affect the PrP-induced oligomerization of tubulin. We propose that the binding of Tau stabilizes tubulin in a conformation less susceptible to oligomerization by PrP. Since elevated phosphorylation of Tau leading to a loss of its function is observed in Alzheimer disease and related tauopathies, our results point at a possible molecular link between these neurodegenerative disorders and TSEs. 相似文献
17.
Severe neurodegradative brain diseases, like Alzheimer, are tightly linked with proteolytic activity in the human brain. Proteinases expressed in the brain, such as human trypsin IV, are likely to be involved in the pathomechanism of these diseases. The observation of amyloid formed in the brain of transgenic mice expressing human trypsin IV supports this hypothesis. Human trypsin IV is also resistant towards all studied naturally occurring polypeptide inhibitors. It has been postulated that the substitution of Gly193 to arginine is responsible for this inhibitor resistance. Here we report the X-ray structure of human trypsin IV in complex with the inhibitor benzamidine at 1.7 A resolution. The overall fold of human trypsin IV is similar to human trypsin I, with a root-mean square deviation of only 0.5 A for all C(alpha) positions. The crystal structure reveals the orientation of the side-chain of Arg193, which occupies an extended conformation and fills the S2' subsite. An analysis of surface electrostatic potentials shows an unusually strong clustering of positive charges around the primary specificity pocket, to which the side-chain of Arg193 also contributes. These unique features of the crystal structure provide a structural basis for the enhanced inhibitor resistance, and enhanced substrate restriction, of human trypsin IV. 相似文献
18.
Summers EL Meindl K Usón I Mitra AK Radjainia M Colangeli R Alland D Arcus VL 《PloS one》2012,7(6):e38542
Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 ? resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ?-?-a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated. 相似文献
19.
Human coactosin-like protein is an actin filament binding protein but does not bind to globular actin. It associates with 5-Lipoxygenase both in vivo and in vitro, playing important roles in modulating the activities of actin and 5-Lipoxygenase. Coactosin counteracts the capping activity of capping protein which inhibits the actin polymerization. We determined the crystal structures of human coactosin-like protein by multi-wavelength anomalous dispersion method. The structure showed a high level of similarity to ADF-H domain, although their amino acid sequences share low degree of homology. A few conserved hydrophobic residues that may contribute to the folding were identified. This structure suggests coactosin-like protein bind to F-actin in a different way from ADF/Cofilin family. Combined with the information from previous mutagenesis studies, the binding sites for F-actin and 5-Lipoxygenase were analyzed, respectively. These two sites are quite close, which might prevent F-actin and 5-Lipoxygenase from binding to coactosin simultaneously. 相似文献
20.
Dunten P Belunis C Crowther R Hollfelder K Kammlott U Levin W Michel H Ramsey GB Swain A Weber D Wertheimer SJ 《Journal of molecular biology》2002,316(2):257-264
We report crystal structures of the human enzyme phosphoenolpyruvate carboxykinase (PEPCK) with and without bound substrates. These structures are the first to be determined for a GTP-dependent PEPCK, and provide the first view of a novel GTP-binding site unique to the GTP-dependent PEPCK family. Three phenylalanine residues form the walls of the guanine-binding pocket on the enzyme's surface and, most surprisingly, one of the phenylalanine side-chains contributes to the enzyme's specificity for GTP. PEPCK catalyzes the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle. Because the gluconeogenic pathway contributes to the fasting hyperglycemia of type II diabetes, inhibitors of PEPCK may be useful in the treatment of diabetes. 相似文献