首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a broad spectrum inhibitor of the matrix metalloproteinases (MMPs), which function in extracellular matrix catabolism. Here, phage display was used to identify variants of human TIMP-2 that are selective inhibitors of human MMP-1, a collagenase whose unregulated action is linked to cancer, arthritis, and fibrosis. Using hard randomization of residues 2, 4, 5, and 6 (L1) and soft randomization of residues 34-40 (L2) and 67-70 (L3), a library was generated containing 2 × 10(10) variants of TIMP-2. Five clones were isolated after five rounds of selection with MMP-1, using MMP-3 as a competitor. The enriched phages selectively bound MMP-1 relative to MMP-3 and contained mutations only in L1. The most selective variant (TM8) was used to generate a second library in which residues Cys(1)-Gln(9) were soft-randomized. Four additional clones, selected from this library, showed a similar affinity for MMP-1 as wild-type TIMP-2 but reduced affinity for MMP-3. Variants of the N-terminal domain of TIMP-2 (N-TIMP-2) with the sequences of the most selective clones were expressed and characterized for inhibitory activity against eight MMPs. All were effective inhibitors of MMP-1 with nanomolar K(i) values, but TM8, containing Ser(2) to Asp and Ser(4) to Ala substitutions, was the most selective having a nanomolar K(i) value for MMP-1 but no detectable inhibitory activity toward MMP-3 and MMP-14 up to 10 μM. This study suggests that phage display and selection with other MMPs may be an effective method for discovering tissue inhibitor of metalloproteinase variants that discriminate between specified MMPs as targets.  相似文献   

2.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.  相似文献   

3.
The TIMP family of matrix metalloproteinase inhibitors consists of four members, of which TIMP-1, -2 and -4 are secreted, freely diffusible proteins, whereas TIMP-3 is ECM-associated. Mutations in the TIMP3 gene have been linked to Sorsby's fundus dystrophy (SFD), an autosomal dominant inherited retinal degenerative disease that leads to blindness. The SFD mutations characterized result in introduction of an unpaired cysteine residue in the C-terminal domain of TIMP-3. We have expressed four SFD mutant TIMP-3 proteins in baby hamster kidney (BHK) cells and evaluated their characteristics alongside wild-type TIMP-3. Analysis of the mutant proteins (Ser156Cys, Gly167Cys, Tyr168Cys and Ser181Cys) by SDS-PAGE and reverse zymography revealed that each of the mutants retained gelatinase A and gelatinase B inhibitory activity, and were localized to the ECM. Association rate constants for Ser156Cys TIMP-3 with gelatinase-A, gelatinase-B, stromelysin-1 and collagenase-3 were only moderately reduced compared to wild-type TIMP-3. However, all of the mutants displayed aberrant protein-protein interactions, resulting in the presence of additional proteins or complexes in ECM preparations. Two of the mutants (Ser156Cys and Ser181Cys) showed a marked propensity to form multiple higher molecular-weight complexes that retained TIMP activity on reverse zymography. Expression of the SFD mutant TIMP-3 (and to a lesser extent, wild-type TIMP-3) proteins in BHK cells conferred increased cell adhesiveness to the ECM. Our findings indicate that the pathogenesis of Sorsby's fundus dystrophy cannot be attributed to a failure to localize SFD TIMP-3 proteins to the ECM or defects in MMP inhibition, but may involve the formation of aberrant TIMP-3-containing protein complexes and altered cell adhesion.  相似文献   

4.
The sarafotoxins and endothelins are approximately 25-residue peptides that spontaneously fold into a defined tertiary structure with specific pairing of four cysteines into two disulfide bonds. Their structures show an interesting topological similarity to the core of the metalloproteinase interaction sites of the tissue inhibitors of metalloproteinases. Previous work indicates that sarafotoxins and endothelins can be engineered to eliminate or greatly reduce their vasopressive action and that their structural framework can withstand multiple sequence changes. When sarafotoxin 6b, which possesses modest matrix metalloproteinase inhibitory activity, was C-terminally truncated to remove its toxic vasopressive activity, the metalloproteinase inhibitory activity was essentially abolished. However, further changes, based on the sequences of peptides selected from libraries of sarafotoxin variants or suggested by analogy with tissue inhibitors of metalloproteinases, progressively enhanced the matrix metalloproteinase inhibitory activity. Peptide variants with multiple substitutions folded correctly and formed native disulfide bonds. Improvements in matrix metalloproteinase affinity have generated a peptide with micromolar K(i) values for matrix metalloproteinase-1 and -9 that are selective inhibitors of different metalloproteinases. Characterization of its solution structure indicates a close similarity to sarafotoxin but with a more extended C-terminal helix. The effects of N-acetylation and other changes, as well as docking studies, support the hypothesis that the engineered sarafotoxins bind to matrix metalloproteinases in a manner analogous to the tissue inhibitors of metalloproteinases.  相似文献   

5.
Recombinant tissue inhibitor of metalloproteinases (TIMP-1) and a truncated version containing only the three N-terminal loops, delta 127-184TIMP, have been expressed in myeloma cells and purified by affinity chromatography and gel filtration. delta 127-184TIMP was found to exist as two main glycosylation variants of molecular mass 24 kD and 19.5 kDa and an unglycosylated form of 13 kDa. All forms of the truncated inhibitor were able to inhibit and form complexes with active forms of the matrix metalloproteinases, indicating that the major structural features for specific interaction with these enzymes resides in these three loops. Stable binding of delta 127-184TIMP to pro 95-kDa gelatinase was not demonstrable under the conditions for binding of full-length TIMP-1.  相似文献   

6.
The backbone mobility of the N-terminal domain of tissue inhibitor of metalloproteinases-2 (N-TIMP-2) was determined both for the free protein and when bound to the catalytic domain of matrix metalloproteinase-3 (N-MMP-3). Regions of the protein with internal motion were identified by comparison of the T(1) and T(2) relaxation times and (1)H-(15)N nuclear Overhauser effect values for the backbone amide (15)N signals for each residue in the sequence. This analysis revealed rapid internal motion on the picosecond to nanosecond time scale for several regions of free N-TIMP-2, including the extended beta-hairpin between beta-strands A and B, which forms part of the MMP binding site. Evidence of relatively slow motion indicative of exchange between two or more local conformations on a microsecond to millisecond time scale was also found in the free protein, including two other regions of the MMP binding site (the CD and EF loops). On formation of a tight N-TIMP-2. N-MMP-3 complex, the rapid internal motion of the AB beta-hairpin was largely abolished, a change consistent with tight binding of this region to the MMP-3 catalytic domain. The extended AB beta-hairpin is not a feature of all members of the TIMP family; therefore, the binding of this highly mobile region to a site distant from the catalytic cleft of the MMPs suggests a key role in TIMP-2 binding specificity.  相似文献   

7.
According to recent investigations, the C-terminal domain of the tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) is responsible for some biological effects that are independent of the enzyme-inhibiting effect of the N-terminal domain of the molecule. The C-terminal domain has been prepared for structure-biological activity investigations. After the chemical synthesis and the folding of the linear peptide. LC-MS and MALDI-MS analysis revealed that two isomers with different disulphide bond arrangements were formed. Since more than 30 folding experiments resulted in products with a very similar HPLC-profile, it was concluded that in the absence of the TIMP-1 N-terminal domain no entirely correct folding of the C-terminal domain occurred. Furthermore, it was observed that, in spite of several purification steps, mercury(II) ions were bound to the 6SH-linear peptide; it was demonstrated--using disulphide bonded TIMP-1(Cys145-Cys166) as a model--that mercury(II) ions can cause peptide degradation at pH 7.8 as well as in 0.1% trifluoroacetic acid.  相似文献   

8.
Matrix metalloproteinase 2 (MMP-2) is able to degrade type IV collagen, and thus plays a key role in the migration of tumor cells. MMP-2 activity is inhibited by its tissue inhibitor (TIMP-2). The imbalance between MMPs and TIMPs may facilitate progression of cancer cells. The aim of this study was to compare the clinical importance of MMP-2 and TIMP-2 to that of classical tumor markers, namely carcinoembryonic antigen (CEA) and carbohydrate antigen (CA 19-9) in the diagnosis of gastric cancer (GC) by calculating the diagnostic criteria and estimating the levels of MMP-2, TIMP-2, CEA and CA 19-9 in GC patients in relation to clinicopathological features of cancer. We found that serum levels of MMP-2 and TIMP-2 were significantly lower, whereas serum tumor markers were higher, in GC patients than in healthy subjects. Moreover, concentrations of TIMP-2 and CEA correlated with gastric wall infiltration, while CA 19-9 levels correlated with gastric wall infiltration and the presence of nodal metastasis. None of the proteins tested was found to be an independent prognostic factor for GC patients' survival. The percentage of true positive results of TIMP-2 (61%) was higher than those of MMP-2 (54%) and the classical tumor markers CEA (21%) and CA 19-9 (31%). The highest diagnostic sensitivity was observed for the combined use of TIMP-2 with MMP-2 (77%). The results suggest the greater importance of serum MMP-2 and TIMP-2 than of the classical tumor markers CEA and CA 19-9 in the diagnosis of GC. But this issue requires further investigation.  相似文献   

9.
Invasion and metastasis are the primary causes of breast cancer mortality, and increased knowledge about the molecular mechanisms involved in these processes is highly desirable. High levels of hyaluronan in breast tumors have been correlated with poor patient survival. The involvement of hyaluronan in the early invasive phase of a clone of breast cancer cell line MDA-MB-231 that forms bone metastases was studied using an in vivo-like basement membrane model. The metastatic to bone tumor cells exhibited a 7-fold higher hyaluronan-synthesizing capacity compared with MDA-MB-231 cells predominately due to an increased expression of hyaluronan synthase 2 (HAS2). We found that knockdown of HAS2 completely suppressed the invasive capability of these cells by the induction of tissue metalloproteinase inhibitor 1 (TIMP-1) and dephosphorylation of focal adhesion kinase. HAS2 knockdown-mediated inhibition of basement membrane remodeling was rescued by HAS2 overexpression, transfection with TIMP-1 siRNA, or addition of TIMP-1-blocking antibodies. Moreover, knockdown of HAS2 suppressed the EGF-mediated induction of the focal adhesion kinase/PI3K/Akt signaling pathway. Thus, this study provides new insights into a possible mechanism whereby HAS2 enhances breast cancer invasion.  相似文献   

10.
The membrane-type 1 matrix metalloproteinase (MT1-MMP) has been shown to be a key enzyme in tumor angiogenesis and metastasis. MT1-MMP hydrolyzes a variety of extracellular matrix components and is a physiological activator of pro-MMP-2, another MMP involved in malignancy. Pro-MMP-2 activation by MT1-MMP involves the formation of an MT1-MMP.tissue inhibitors of metalloproteinases 2 (TIMP-2). pro-MMP-2 complex on the cell surface that promotes the hydrolysis of pro-MMP-2 by a neighboring TIMP-2-free MT1-MMP. The MT1-MMP. TIMP-2 complex also serves to reduce the intermolecular autocatalytic turnover of MT1-MMP, resulting in accumulation of active MT1-MMP (57 kDa) on the cell surface. Evidence shown here in Timp2-null cells demonstrates that pro-MMP-2 activation by MT1-MMP requires TIMP-2. In contrast, a C-terminally deleted TIMP-2 (Delta-TIMP-2), unable to form ternary complex, had no effect. However, Delta-TIMP-2 and certain synthetic MMP inhibitors, which inhibit MT1-MMP autocatalysis, can act synergistically with TIMP-2 in the promotion of pro-MMP-2 activation by MT1-MMP. In contrast, TIMP-4, an efficient MT1-MMP inhibitor, had no synergistic effect. These studies suggest that under certain conditions the pericellular activity of MT1-MMP in the presence of TIMP-2 can be modulated by synthetic and natural (TIMP-4) MMP inhibitors.  相似文献   

11.
The mammalian collagenases are a subgroup of the matrix metalloproteinases (MMPs) that are uniquely able to cleave triple helical fibrillar collagens. Collagen breakdown is an essential part of extracellular matrix turnover in key physiological processes including morphogenesis and wound healing; however, unregulated collagenolysis is linked to important diseases such as arthritis and cancer. The tissue inhibitors of metalloproteinases (TIMPs) function in controlling the activity of MMPs, including collagenases. We report here the structure of a complex of the catalytic domain of fibroblast collagenase (MMP-1) with the N-terminal inhibitory domain of human TIMP-1 (N-TIMP-1) at 2.54 A resolution. Comparison with the previously reported structure of the TIMP-1/stromelysin-1 (MMP-3) complex shows that the mechanisms of inhibition of both MMPs are generally similar, yet there are significant differences in the protein-protein interfaces in the two complexes. Specifically, the loop between beta-strands A and B of TIMP-1 makes contact with MMP-3 but not with MMP-1, and there are marked differences in the roles of individual residues in the C-D connector of TIMP-1 in binding to the two MMPs. Structural rearrangements in the bound MMPs are also strikingly different. This is the first crystallographic structure that contains the truncated N-terminal domain of a TIMP, which shows only minor differences from the corresponding region of the full-length protein. Differences in the interactions in the two TIMP-1 complexes provide a structural explanation for the results of previous mutational studies and a basis for designing new N-TIMP-1 variants with restricted specificity.  相似文献   

12.
Human rheumatoid synovial cells in culture secrete both 72-kDa progelatinase and a complex consisting of 72-kDa progelatinase and a 24-kDa inhibitor of metalloproteinases, TIMP-2. In addition, the culture medium contains TIMP-1, the classical inhibitor of metalloproteinases, with a molecular mass of 30 kDa. TIMP-1 does not form a complex with free 72-kDa progelatinase. Free progelatinase and progelatinase complexed with TIMP-2 can be activated with the organomercury compound p-aminophenylmercury acetate. The activated complex shows less than 10% the enzyme activity of activated free gelatinase. The progelatinase-TIMP-2 complex could be shown to be an inhibitor for other metalloproteinases, such as gelatinase and collagenase secreted by human rheumatoid synovia fibroblasts, as well as for the corresponding enzymes from human neutrophils.  相似文献   

13.
The family of tissue inhibitors of metalloproteinases (TIMPs) exhibits diverse physiological/biological functions including the inhibition of active matrix metalloproteinases, regulation of proMMP activation, cell growth, and the modulation of angiogenesis. TIMP-1 is a secreted protein that can be detected on the cell surface through its interaction with surface proteins. The diverse biological functions of TIMP-1 are thought to lie, in part, in the kinetics of TIMP-1/MMP/surface protein interactions. Proteins anchored by glycoinositol phospholipids (GPIs), when purified and added to cells in vitro, are incorporated into their surface membranes. A GPI anchor was fused to TIMP-1 to generate a reagent that could be added directly to cell membranes and thus focus defined concentrations of TIMP-1 protein on any cell surface independent of protein-protein interaction. Unlike native TIMP-1, exogenously added GPI-anchored TIMP-1 protein effectively blocked release of MMP-2 and MMP-9 from osteosarcoma cells. TIMP-1-GPI was a more effective modulator of migration and proliferation than TIMP-1. While control hTIMP-1 protein did not significantly affect migration of primary microvascular endothelial cells at the concentrations tested, the GPI-anchored TIMP-1 protein showed a pronounced suppression of endothelial cell migration in response to bFGF. In addition, TIMP-1-GPI was more effective at inducing microvascular endothelial proliferation. In contrast, fibroblast proliferation was suppressed by the agent. Reagents based on this method should assist in the dissection of the protease cascades and activities involved in TIMP biology. Membrane-fixed TIMP-1 may represent a more effective version of the protein for use in therapeutic expression.  相似文献   

14.
15.
Human melanoma cells secret a 21-kDa protein, termed CSC-21K, which binds with 1:1 molar stoichiometry to the matrix metalloproteinase type IV collagenase proenzyme (70-kDa gelatinase) secreted by the same cells. This binding protein has been purified and its complete primary structure determined by sequencing overlapping peptides which span the entire protein. The amino acid sequence demonstrates that this protein shares significant homology with human TIMP (tissue inhibitor of metalloproteinase), including conservation of the positions of the 12 cysteine residues and 3 of 4 tryptophan residues. The identification of CSC-21K now indicates that a family of TIMP-related proteins exists. Individual members of this family may possess selective affinities for different members of the matrix metalloproteinase family. CSC-21K produced by tumor cells is isolated as a 1:1 molar complex with type IV procollagenase, as demonstrated by amino acid composition analysis. Addition of purified CSC-21K to the activated metalloproteinase results in inhibition of the collagenolytic activity in a stoichiometric fashion. Based on its sequence homology to TIMP and ability to inhibit type IV collagenolysis we propose the name TIMP-2 for this inhibitor.  相似文献   

16.
In response to periodontal inflammation, host cells release matrix metalloproteinases (MMPs) that contribute to periodontal tissue breakdown unless the tissue inhibitors of metalloproteinases (TIMPs) neutralize their activity. In this study, the capacity of Porphyromonas gingivalis to inactivate TIMP-1 was investigated. Proteolytic digestion of TIMP-1 was monitored by SDS-PAGE and Western immunoblotting. Planktonic cells and biofilms of P. gingivalis degraded TIMP-1 with production of several lower molecular mass fragments. Incorporation of human serum in the assay mixture had no effect on the degradation of TIMP-1 by P. gingivalis, whereas a cysteine proteinase inhibitor caused a complete inhibition. Using a fluorogenic assay, it was found that TIMP-1 treated with P. gingivalis lost its capacity to inhibit MMP-9 activity. This study revealed the potential of P. gingivalis to inactivate TIMP-1 through proteolytic degradation. This phenomenon may contribute to increasing significantly the level of active MMPs in affected periodontal sites and subsequently favor tissue destruction.  相似文献   

17.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.   总被引:12,自引:0,他引:12  
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.  相似文献   

18.
The presence of metalloproteinase activity in endometrial flushings obtained from premenopausal women, during the proliferative and secretory phases of the menstrual cycle, control post-menopausal women and women with post-menopausal bleeding (PMB) with or without adenocarcinoma was analysed by zymography. In addition, quantitative measurements of matrix metalloproteinase 2 (MMP-2), MMP-3, MMP-9 and tissue inhibitor of metalloproteinase 1 (TIMP-1) in the flushings were obtained by ELISA. The zymography results showed eight bands of activity, with molecular weights ranging from 51 to 208 kDa in the flushings from pre-menopausal women and post-menopausal women, particularly those with adenocarcinoma. Both zymography and ELISA showed that MMP-2 and MMP-9 were the major metalloproteinases found in the flushings and only low concentrations of MMP-3 were found. Concentrations of MMP-2 in pre-menopausal women were higher in flushings obtained during the secretory phase of the menstrual cycle than those obtained in the proliferative phase (P < 0.05), suggesting that it may play a role in embryo implantation. Concentrations of MMP-2 (P < 0.001), MMP-9 (P < 0.05) and TIMP-1 (P < 0.001) in the flushings from post-menopausal control women were lower than those from pre-menopausal women. Concentrations of MMP-2 (P < 0.05) and TIMP-1 (P < 0.05) were higher in flushings from women with PMB without carcinoma compared with post-menopausal controls and concentrations of MMP-9 (P < 0.01) and TIMP-1 (P < 0.05) in flushings from women with adenocarcinoma were higher than in post-menopausal controls. Among subjects with PMB, concentrations of MMP-9 in women with adenocarcinoma were higher than those without carcinoma (P < 0.05). Our results show that concentrations of MMP-2, MMP-9 and TIMP-1, but not MMP-3, are associated with endometrial activity and, therefore, may have a role in the breakdown of endometrial tissue. In addition, the increased concentrations of MMP-9 in flushings of women with adenocarcinoma indicate that this particular proteinase is associated with the presence of endometrial neoplastic cells.  相似文献   

19.
The purpose of this study was to investigate the association between tumor tissue levels of total tissue inhibitor of metalloproteinases-1 (TIMP-1) and prognosis in patients with primary breast cancer and to analyze whether measurement of TIMP-1 in tumor extracts added prognostic information to that obtained from measurements of urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 (PAI-1). An established sandwich enzyme-linked immunosorbent assay was thoroughly validated for the measurement of total TIMP-1 in tumor tissue extracts and used to determine levels of total TIMP-1 in 341 detergent-extracted tumor tissue samples from patients with primary breast cancer. The median age of the patients was 56 years (range, 29-75 years), and 164 were lymph node-negative, and 177 were lymph node-positive. The median follow-up time of the patients was 8.5 years (range, 7.3-11.3 years), and during follow-up 153 patients experienced recurrence of disease, and 136 patients died. In univariate survival analysis, we found a significant association between tumor tissue TIMP-1 level and both shorter recurrence-free survival (p = 0.0004) and shorter overall survival (p = 0.03). In multivariate survival analysis, higher tumor tissue TIMP-1 levels significantly and independently predicted shorter recurrence-free survival (p < 0.05, hazard ratios >1, comparing quartiles II-IV with I). In addition, we found that measurement of TIMP-1 levels added prognostic information to that obtained from measurement of PAI-1. In conclusion, high levels of TIMP-1 in tumor tissue extracts are significantly associated with a poor prognosis in patients with primary breast cancer. Furthermore TIMP-1 adds prognostic information to that obtained from PAI-1. However, further validation in independent data sets is needed.  相似文献   

20.
Tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 have growth-stimulating activity for a wide range of cell types. Ras, which comprises a family of three members, i.e, Ha-Ras, Ki-Ras, and H-Ras, is known to participate in growth control in all its facets, including cell proliferation, transformation, differentiation, and apoptosis. In this study, we tested the hypothesis that Ras might be involved in the cell growth-promoting activity of TIMPs. Using MG-63 human osteosarcoma cells, we demonstrated that both TIMP-1 and TIMP-2 caused an increase in the Ras-GTP level in a dose-dependent manner. Our previous results indicated that TIMP-1 activity is mediated through the tyrosine kinase (TYK)/mitogen-activated protein kinase (MAPK) pathway. Here, we demonstrated that Ras activation by TIMP-1 was inhibited by a specific TYK inhibitor, herbimycin A, suggesting that the TYK/MAPK signaling pathway was involved in Ras activation by TIMP-1. However, the activation of Ras by TIMP-2 was inhibited by an inhibitor specific for cyclic AMP-dependent protein kinase (PKA), H89, suggesting the involvement of the PKA-mediated pathway. Furthermore, TIMP-2 promoted the formation of a complex between Ras-GTP and phosphoinositide 3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号