首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
A mass outbreak of Escherichia coli O157:H45 was first reported in Japan in 1998. This pathogen was classified as an enteropathogenic E. coli (EPEC) O157 because it was characterized by the Shiga toxin gene (stx)-negative and bundle-forming pilus (bfp) gene-positive genotypes. In this study, we investigated the type III secretion system in EPEC O157. Although no type III secreted proteins, Esps (E. colisecreted proteins), in EPEC O157:H45 were detectable in culture supernatant, secreted proteins were induced by the introduction of an EPEC plasmid-encoded regulator, per. In further contrast to EHEC O157:H7, EPEC O157:H45 triggered the accumulation of tyrosine phosphorylated proteins beneath the adherent bacteria. These results suggest that regulation of the type III secretion apparatus and host signal transduction events between E. coli O157:H45 and O157:H7 are completely different.  相似文献   

2.
Intimin-gamma is an outer membrane protein of enterohemorrhagic Escherichia coli (EHEC) O157:H7 that is required for the organism to adhere tightly to HEp-2 cells and to colonize experimental animals. Another EHEC O157:H7 protein, the Transferred intimin receptor (Tir), is considered the primary receptor for intimin-gamma. Nevertheless, Tir-independent binding of intimin-gamma to HEp-2 cells has been reported. This observation suggests the existence of a eukaryotic receptor(s) for intimin-gamma. In this study, we sought to identify that receptor(s). First, we determined by equilibrium binding titration that the association of purified intimin-gamma with HEp-2 cells was specific and consistent with a single host cell receptor. Second, we isolated a protein from lysates of HEp-2 cells that bound intimin-gamma and subsequently identified this molecule as nucleolin, a protein involved in cell growth regulation that can be cell surface-expressed. Third, we established that purified intimin-gamma and nucleolin were co-localized on the surface of HEp-2 cells and that the site of EHEC O157:H7 attachment was associated with regions of nucleolin expression. Finally, we demonstrated that mouse anti-nucleolin sera significantly decreased the adherence of EHEC O157:H7 to HEp-2 cells. From this, we conclude that nucleolin is the HEp-2 cell receptor for intimin-gamma expressed by EHEC O157:H7.  相似文献   

3.
EPEC adherence factor (EAF) plasmids from three strains of enteropathogenic Escherichia coli (EPEC) - E2347/69 (O127:H6), E20517 (O111:H2) and E24582 (O142:H6) - were examined. The EAF plasmids were all marked with ampicillin resistance by transposition of Tn801 to give pDEP1, pDEP2 and pDEP11, respectively. All three plasmids showed incompatibility with an FIme and an FIV plasmid and had some similarity in restriction enzyme digest patterns. Plasmid pDEP1 differed from pDEP2 and pDEP11 in being autotransferring and fertility-inhibition positive. An EAF probe consisting of a 1 kb BamHI-SalI restriction endonuclease fragment of the prototype EAF-associated plasmid pMAR2 hybridized to similar-sized SalI-BamHI fragments of pDEP1 and pDEP11 but to a different-sized fragment of plasmid pDEP2. Loss of the EAF plasmids from EPEC strains resulted in a marked reduction in the ability of these strains to adhere to HEp-2 cells. The EAF-plasmid-negative variants did not express a 94 kDa outer-membrane protein (OMP). When these EAF plasmids were reintroduced into EAF-plasmid-negative EPEC strains a high level of adherence equivalent to that of the parent EPEC strains was restored and a 94 kDa OMP was usually expressed. However, when EAF plasmids were transferred into E. coli K12 or non-EPEC E. coli the host strains either did not adhere or adhered poorly to the HEp-2 cells. These transconjugants did not express a 94 kDa OMP.  相似文献   

4.
Enteropathogenic Escherichia coli (EPEC) express rope-like bundles of filaments, termed bundle-forming pili (BFP) (J. A. Girón, A. S. Y. Ho, and G. K. Schoolnik, Science 254:710-713, 1991). Expression of BFP is associated with localized adherence to HEp-2 cells and the presence of the EPEC adherence factor plasmid. In this study, we describe the identification of rod-like fimbriae and fibrillae expressed simultaneously on the bacterial surface of three prototype EPEC strains. Upon fimbrial extraction from EPEC B171 (O111:NM), three fimbrial subunits with masses of 16.5, 15.5, and 14.7 kDa were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their N-terminal amino acid sequence showed homology with F9 and F7(2) fimbriae of uropathogenic E. coli and F1845 of diffuse-adhering E. coli, respectively. The mixture of fimbrial subunits (called FB171) exhibited mannose-resistant agglutination of human erythrocytes only, and this activity was not inhibited by alpha-D-Gal(1-4)-beta-Gal disaccharide or any other described receptor analogs for P, S, F, M, G, and Dr hemagglutinins of uropathogenic E. coli, which suggests a different receptor specificity. Hemagglutination was inhibited by extracellular matrix glycoproteins, i.e., collagen type IV, laminin, and fibronectin, and to a lesser extent by gangliosides, fetuin, and asialofetuin. Scanning electron microscopic studies performed on clusters of bacteria adhering to HEp-2 cells revealed the presence of structures resembling BFP and rod-like fimbriae linking bacteria to bacteria and bacteria to the eukaryotic cell membrane. We suggest a role of these surface appendages in the interaction of EPEC with eukaryotic cells as well as in the overall pathogenesis of intestinal disease caused by EPEC.  相似文献   

5.
Synthetic N -acetyllactosamine (LacNAc) glycoside sequences coupled to BSA competitively inhibit enteropathogenic Escherichia coli (EPEC) localized adherence (LA) to human intestinal biopsy specimens and tissue culture cell monolayers. The LacNAc-specific adhesin appears to be associated with the bundle-forming pili (BFP) expressed by EPEC during the early stages of colonization. Herein, we report that recombinant bundlin inhibits EPEC LA to HEp-2 cells and binds to HEp-2 cells. Recombinant bundlin also binds, with millimolar association constants ( K assoc), to synthetic LacNAc-Benzene and LacNAc-O(CH2)8CONH2 glycosides as assessed in the gas phase by nanoelectrospray ionization mass spectrometry. Furthermore, LacNAc-BSA inhibits LA only of EPEC strains that express α bundlin alleles, suggesting putative locations for the LacNAc-binding pocket in the α bundlin monomer. Collectively, these results suggest that α bundlin possesses lectin-like properties that are responsible for LacNAc-specific initial adherence of α bundlin-expressing EPEC strains to host intestinal epithelial cells.  相似文献   

6.
Aims:  To establish the role of maltoporin (LamB) in adherence of enteropathogenic Escherichia coli (EPEC) to epithelial cells in vitro.
Methods and Results:  Three strains, wild type (WT) EPEC, a maltoporin (LamB) mutant ΔlamB , and DH5α were used to study adherence to cultured HEp-2 cells. Mutant ΔlamB was found to be deficient in adherence compared to WT EPEC. Adherence of ΔlamB was restored to wild type levels when complemented with the cloned lamB gene. The non–adherent strain DH5α also adhered to HEp-2 cells when it harboured the cloned lamB gene. The LamB protein was isolated from WT EPEC by electroelution and antibodies were raised in rabbits. The specificity of the antibodies was analysed by Western blotting. Anti-LamB antiserum reduced adherence of WT EPEC to HEp-2 cells. The LamB protein was coated on latex beads and the beads adhered to HEp-2 cells. Anti-LamB antiserum prevented bead adherence to HEp-2 cells. Multiple sequence alignment showed that the L9 loop of EPEC LamB had four amino acids different from the L9 loop of LamB from several other related pathogens.
Conclusions:  LamB serves as an alternative or additional adherence factor for EPEC.
Significance and Impact of the Study:  Adherence is an important component of the pathogenesis of noninvasive pathogens like EPEC. A putative adhesin such as LamB, which has already been found to be co-expressed with virulence factor EspB may be a potential vaccine candidate for control of EPEC and related pathogens.  相似文献   

7.
The outer membrane adhesins of enteropathogenic Escherichia coli, Citrobacter rodentium, and enterohemorrhagic E. coli (EHEC) O157:H7 that mediate attach and efface intestinal lesions are classified as intimin alpha, beta, and gamma, respectively. Each of these intimin types binds to its cognate, bacterially encoded receptor (called Tir for translocated intimin receptor) to promote tight adherence of the organism to the host-cell plasma membrane. We previously reported that gamma intimin of EHEC O157:H7 also bound to a eucaryotic receptor that we determined was nucleolin. The objective of this study was to investigate in vitro and in vivo the interactions of intimins alpha, beta, and gamma with nucleolin in the presence of Tir from EHEC O157:H7. Protein binding experiments demonstrated that intimin of types alpha, beta, and gamma bound nucleolin with similar affinity. Moreover, all three intimin types co-localized with regions of nucleolin expressed on the surface of HEp-2 cells. When intimin alpha, beta, or gamma bound to Tir in vitro, the intimin interaction with nucleolin was blocked. Both Tir and nucleolin accumulated beneath intimin-presenting bacteria that had attached to the surface of HEp-2 cells. Taken together, these findings suggest that nucleolin is involved in bacterial adherence promoted by all intimin types and that Tir and nucleolin compete for intimin during adherence.  相似文献   

8.
In order to further characterize cellular invasion by enteropathogenic Escherichia coli (EPEC), we compared invasion of HEp-2 cells by EPEC and enteroinvasive E. coli (EIEC). We used a gentamicin HEp-2 cell assay and measured bacterial recovery under conditions of varying incubation time and temperature, and in the presence or absence of inhibitors of cellular microfilaments and microtubules. We found that, unlike EIEC, EPEC did not rapidly multiply within HEp-2 cell but invaded well at 32 degrees C. While microfilament inhibitors reduced invasion by both EIEC and EPEC, microtubule inhibitors reduced invasion by EPEC only. These results suggest that EPEC and EIEC differ in their mechanisms of epithelial cell invasion.  相似文献   

9.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) can produce attaching and effacing (AE) lesions on intestinal epithelium in vitro and in vivo. A gene necessary to cause the AE lesion has been identified and designated Escherichia coli attaching and effacing A (eaeA) gene. In this study, an alkaline phosphatase (ALP)-conjugated oligonucleotide probe for the eaeA gene was developed and used to detect the eaeA gene among 163 strains of classical EPEC and 25 strains of EHEC O157. The prevalence rates of eaeA gene in the strains of classical EPEC and EHEC O157 were 51.5 and 100%, respectively. The eaeA-positive rate (60.0%) in strains of class I EPEC serogroups (O26, O55, O86, O111, O119, O125, O126, O127, O128ab, and O142) was significantly higher than that (22.9%) in strains of the class II EPEC serogroups (O18, O44, O114) (P<0.01). A total of 109 eaeA-positive classical EPEC and EHEC O157 were positive for fluorescent actin staining (FAS) assay, whereas 79 eaeA-negative classical EPEC were negative. Both the sensitivity and specificity of the eaeA probe versus the FAS assay positivity were 100%. Thus, use of the ALP-conjugated oligonucleotide probe for the eaeA gene would be specific and reliable in identifying the adherence capability of EPEC and EHEC.  相似文献   

10.
Sixty strains of Escherichia coli belonging to enteropathogenic serogroups (EPEC) were examined for the ability to adhere to HEp-2 cells, the possession of the genes encoding EPEC adherence factor (EAF) and the ability to express an outer-membrane protein (OMP) of 94 kDa thought to be involved in bacterial adhesion to eukaryotic cells. An absolute correlation was found between HEp-2 adhesion and the possession of the genes encoding EAF. An OMP of 94 kDa was observed in the SDS-PAGE profile of most adhesive strains. In some strains this protein was prone to proteolytic degradation. An antiserum raised to a HEp-2 adhesive strain of EPEC did not react with the 94 kDa OMP of all EPEC which were EAF-positive and HEp-2 adhesive, indicating some interstrain antigenic variation of this protein. Although this 94 kDa protein was surface-exposed, specific antibodies binding to the 94 kDa protein in situ in the outer membrane did not interfere with adhesion of EPEC to HEp-2 cells. Therefore, these studies question the value of this protein as a potential vaccine component.  相似文献   

11.
We characterized two Shiga toxin-producing Escherichia coli (STEC) O86:HNM isolates from a patient with hemolytic uremic syndrome (HUS) or bloody diarrhea. Both of them did not possess the eaeA gene. However, the isolate from a HUS patient carried genetic markers of enteroaggregative E. coli (EAEC) and showed aggregative adherence pattern to HEp-2 cells. The other isolate from bloody diarrhea, which was negative with EAEC markers, was diffusely adhered to HEp-2 cells. The stx2 gene in both E. coli O86:HNM strains was encoded in each infectious phage, which was partially homologous to that of strain EDL933, a STEC O157:H7. These results will help to explain the genotypic divergences of STEC.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) is a significant cause of paediatric diarrhoea worldwide. Virulence requires adherence to intestinal epithelial cells, mediated in part through type IV bundle-forming pili (BFP), and the EPEC protein Tir. Tir is inserted into the enterocyte plasma membrane (PM), resulting in the formation of actin-rich pedestals. Tir is translocated by the type III secretion system (TTSS), through a pore comprised of EPEC proteins inserted into the PM. Here, we demonstrate that in the absence of BFP, EPEC adherence, effector translocation and pedestal formation are dependent on lipid rafts. Lipid raft disruption using methyl-beta-cyclodextrin (MbetaCD) decreased adherence by an EPEC BFP-deficient strain from 85% to 1%. Translocation of the effectors Tir and EspF was blocked by MbetaCD treatment, although the TTSS pore still formed. MbetaCD treatment after Tir delivery decreased pedestal formation by EPEC from 40% to 5%, but not by the related pathogen E. coli O157:H7 which uses a different Tir-based mechanism. In contrast, EPEC expressing the BFP can circumvent the requirement for membrane cholesterol. This suggests that lipid rafts play a role in virulence of this medically important pathogen.  相似文献   

13.
14.
The human pathogen Shiga-toxigenic Escherichia coli (STEC) O157:H7 contains a ycbQRST fimbrial-like operon, which shares significant homology to the family of F17 fimbrial biogenesis genes f17ADCG found in enterotoxigenic E. coli . We report that growth of STEC O157:H7 strain EDL933 in minimal Minca medium at 37°C and during adherence to epithelial cells led to the production of fine peritrichous fimbriae, which were found to be composed of a major subunit of 18 kDa whose N-terminal amino acid sequence matched the predicted protein product of the ycbQ gene; and showed significant homology to the F17a-A fimbrin. Similar to the F17 fimbriae, the purified STEC fimbriae and the recombinant YcbQ protein fused to a His peptide tag bound laminin, but not fibronectin or collagen. Thus, we propose the name E . coli YcbQ l aminin-binding f imbriae (ELF) to designate the fimbriae encoded by the ycbQRST operon. The role of ELF as an adherence factor of STEC to cultured epithelial cells was investigated. We provide compelling evidence demonstrating that ELF contributes to adherence of STEC to human intestinal epithelial cells and to cow and pig gut tissue in vitro . Deletion in the fimbrin subunit gene elfA (or ycbQ ) in STEC strain EDL933 led to an isogenic strain, which showed significant reduction (60%) in adherence to HEp-2 cells in comparison with the parental strain. In addition, antibodies against the purified ELF also partially blocked adherence of two STEC O157:H7 strains. These observations suggest that ELF functions as an accessory adherence factor that, along with other known redundant adhesins, contributes to the overall adhesive properties of STEC O157:H7 providing these organisms with ecological advantages to survive in different hosts and in the environment.  相似文献   

15.
Abstract A total of 112 EPEC strains isolated from children with diarrhoea in New Zealand were examined for mannose-resistant HEp-2 cell adherence and production of exotoxins. Enterotoxin production was not detected in any of the strains examined. Verotoxin production was detected in 13 (11.6%) strains and of these 4 were also found to adhere to HEp-2 cells. HEp-2 cell adherence was displayed by a total of 29 (25.8%) strains of which 22 were diffusely adherent. Only 3 (2.7%) strains were shown to belong to the new virulence phenotype, entero-aggregative adherence, when examined in the adherence assay. We identified one strain with the novel characteristics of causing detachment of HEp-2 cells from glass coverslips and are further investigating this possible virulence mechanism. These results suggest that if EPEC strains are to be considered as a cause of diarrhoea, the search for new virulence factors must be extended.  相似文献   

16.
Adherence of intestinal pathogens, including Escherichia coli O157:H7, to human intestinal epithelial cells is a key step in pathogenesis. Probiotic bacteria, including Lactobacillus helveticus R0052 inhibit the adhesion of E. coli O157:H7 to epithelial cells, a process which may be related to specific components of the bacterial surface. Surface-layer proteins (Slps) are located in a paracrystalline layer outside the bacterial cell wall and are thought to play a role in tissue adherence. However, the ability of S-layer protein extract derived from probiotic bacteria to block adherence of enteric pathogens has not been investigated. Human epithelial (HEp-2 and T84) cells were treated with S-layer protein extract alone, infected with E. coli O157:H7, or pretreated with S-layer protein extract prior to infection to determine their importance in the inhibition of pathogen adherence. The effects of S-layer protein extracts were characterized by phase-contrast and immunofluorescence microscopy and measurement of the transepithelial electrical resistance of polarized monolayers. Pre-treatment of host epithelial cells with S-layer protein extracts prior to E. coli O157:H7 infection decreased pathogen adherence and attaching-effacing lesions in addition to preserving the barrier function of monolayers. These in vitro studies indicate that a non-viable constituent derived from a probiotic strain may prove effective in interrupting the infectious process of an intestinal pathogen.  相似文献   

17.
Enteropathogenic Escherichia coli (EPEC) causes persistent infantile diarrhoea. This nontoxigenic E. coli exhibits a complicated pathogenic mechanism in which its outer membrane proteins and type III secretory proteins damage intestinal epithelium and cause diarrhoea. In accordance with this, our previous study using HEp-2 cells demonstrated cytopathic effects caused by cell-free outer membrane preparations of EPEC. In this study, we report the extrusion of actin-positive strands from HEp-2 and Int 407 cells when treated with outer membrane preparations. An interesting observation of this work, perhaps relevant to the characteristic localized three-dimensional colony formation of EPEC, is the attachment of a wild type EPEC strain to these actin-positive strands.  相似文献   

18.
19.
Enteropathogenic Escherichia coli (EPEC) forms attaching and effacing lesions in the intestinal mucosa characterized by intimate attachment to the epithelium by means of intimin (an outer membrane adhesin encoded by eae ). EPEC is subgrouped into typical (tEPEC) and atypical (aEPEC); only tEPEC carries the EAF (EPEC adherence factor) plasmid that encodes the bundle-forming pilus (BFP). Characteristically, after 3 h of incubation, tEPEC produces localized adherence (LA) (with compact microcolonies) in HeLa/HEp-2 cells by means of BFP, whereas most aEPEC form looser microcolonies. We have previously identified nine aEPEC strains displaying LA in extended (6 h) assays (LA6). In this study, we analysed the kinetics of LA6 pattern development and the role of intimin in the process. Transmission electron microscopy and confocal laser microscopy showed that the invasive process of strain 1551-2 displays a LA phenotype. An eae -defective mutant of strain 1551-2 prevented the invasion although preserving intense diffused adherence. Sequencing of eae revealed that strain 1551-2 expresses the omicron subtype of intimin. We propose that the LA phenotype of aEPEC strain 1551-2 is mediated by intimin omicron and hypothesize that this strain expresses an additional novel adhesive structure. The present study is the first to report the association of compact microcolony formation and an intense invasive ability in aEPEC.  相似文献   

20.
Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E. coli O157:H7. To explore the diversity of O55:H7 and better understand the clonal evolution of O157:H7, we fully sequenced EPEC O55:H7 strain RM12579 (California, 1974), which was collected 1 year before the first U.S. isolate of O157:H7 was identified in California. Phage-related sequences accounted for nearly all differences between the two O55:H7 strains. Additionally, O55:H7 and O157:H7 strains were tested for the presence and insertion sites of Shiga toxin gene (stx)-containing bacteriophages. Analysis of non-phage-associated genes supported core elements of previous O157:H7 stepwise evolutionary models, whereas phage composition and insertion analyses suggested a key refinement. Specifically, the placement and presence of lambda-like bacteriophages (including those containing stx) should not be considered stable evolutionary markers or be required in placing O55:H7 and O157:H7 strains within the stepwise evolutionary models. Additionally, we suggest that a 10.9-kb region (block 172) previously believed unique to O55:H7 strains can be used to identify early O157:H7 strains. Finally, we defined two subsets of O55:H7 strains that share an as-yet-unobserved or extinct common ancestor with O157:H7 strains. Exploration of O55:H7 diversity improved our understanding of the evolution of E. coli O157:H7 and suggested a key revision to accommodate existing and future configurations of stx-containing bacteriophages into current models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号