首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies provide evidence of correlations of DNA methylation and expression of protein‐coding genes with human aging. The relations of microRNA expression with age and age‐related clinical outcomes have not been characterized thoroughly. We explored associations of age with whole‐blood microRNA expression in 5221 adults and identified 127 microRNAs that were differentially expressed by age at < 3.3 × 10?4 (Bonferroni‐corrected). Most microRNAs were underexpressed in older individuals. Integrative analysis of microRNA and mRNA expression revealed changes in age‐associated mRNA expression possibly driven by age‐associated microRNAs in pathways that involve RNA processing, translation, and immune function. We fitted a linear model to predict ‘microRNA age’ that incorporated expression levels of 80 microRNAs. MicroRNA age correlated modestly with predicted age from DNA methylation (= 0.3) and mRNA expression (= 0.2), suggesting that microRNA age may complement mRNA and epigenetic age prediction models. We used the difference between microRNA age and chronological age as a biomarker of accelerated aging (Δage) and found that Δage was associated with all‐cause mortality (hazards ratio 1.1 per year difference, = 4.2 × 10?5 adjusted for sex and chronological age). Additionally, Δage was associated with coronary heart disease, hypertension, blood pressure, and glucose levels. In conclusion, we constructed a microRNA age prediction model based on whole‐blood microRNA expression profiling. Age‐associated microRNAs and their targets have potential utility to detect accelerated aging and to predict risks for age‐related diseases.  相似文献   

3.
Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA‐binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA‐independent manner, thereby repressing translation.  相似文献   

4.
5.
6.
7.
RNA and microRNAs in fragile X mental retardation   总被引:1,自引:0,他引:1  
Fragile X syndrome is caused by the loss of an RNA-binding protein called FMRP (for fragile X mental retardation protein). FMRP seems to influence synaptic plasticity through its role in mRNA transport and translational regulation. Recent advances include the identification of mRNA ligands, FMRP-mediated mRNA transport and the neuronal consequence of FMRP deficiency. FMRP was also recently linked to the microRNA pathway. These advances provide mechanistic insight into this disorder, and into learning and memory in general.  相似文献   

8.
9.
生物小分子microRNA可以对基因表达进行正向或负向调控,研究microRNA与基因之间的关系对于机体稳态的维持和疾病治疗都有着重要意义。利用深度学习方法对microRNA和基因靶向关系进行预测,提出了TransformerMGI模型。在特征工程阶段,针对生物序列潜在信息难以准确地提取这一问题,TransformerMGI模型分别采用了基于图卷积神经网络的GP-GCN方法和DNA2Vec模型对microRNA和基因数据的潜在信息进行提取,得到了二者的表征嵌入矩阵,在模型方面,TransformerMGI模型引入了幂归一化来改进经典的深度学习模型。利用microRNA和基因数据经过特征提取后得到两个表征矩阵,这两个矩阵分别被放入TransformerMGI模型中,通过TransformerMGI模型内部的Attention机制对二者自身和相互的特征信息进行了聚合和关联运算,最终预测出microRNA调控基因的概率。采用ROC曲线下面积和准确召回率曲线作为模型性能评价指标,将TransformerMGI与其他现有模型进行了比较评估。实验结果表明,TransformerMGI模型的AUC和AUPRC评分均可达0.91以上,优于现有的其他模型。TransformerMGI模型能在不考虑生物学原理和基因组背景的前提下,仅依赖microRNA和基因的碱基序列信息,实现microRNA靶向基因的预测,从而为后续的microRNA靶向基因预测研究提供了可借鉴的深度学习方法。  相似文献   

10.
The discovery of small noncoding RNA, including P-element-induced wimpy testis-interacting RNA, small interfering RNA, and microRNA, has energized research in reproductive medicine. In the two decades since the identification of small RNA, first in Caenorhabditis elegans and then in other animals, scientists in many disciplines have made significant progress in elucidating their biology. A powerful battery of tools, including knockout mice and small RNA mimics and antagonists, has facilitated investigation into the functional roles and therapeutic potential of these small RNA pathways. Current data indicate that small RNA play significant roles in normal development and physiology and pathological conditions of the reproductive tracts of females and males. Biologically plausible mRNA targets for these microRNA are aggressively being discovered. The next phase of research will focus on elucidating the clinical utility of small RNA-selective agonists and antagonists.  相似文献   

11.
RNA silencing refers to a conserved sequence‐specific gene‐regulation mechanism mediated by small RNA molecules. In plants, microRNA (miRNA) and small interfering RNA (siRNA) represent two major types of small RNA molecules which play pivotal roles in plant developmental control and antiviral defences. To escape these plant defences, plant viruses have encoded a vast array of viral suppressors of RNA silencing (VSRs) to attack the host antiviral silencing pathway by interfering with small RNA processing, RNA‐induced silencing complex (RISC) assembly, viral mRNA cleavage etc. Transgenic plants expressing distinct VSRs often show developmental aberrations that resemble the phenotype of miRNA‐deficient mutants, implying a potential intrinsic link between VSRs and the miRNA pathway (at least in Arabidopsis thaliana) even though their pathogenic mechanisms remain largely unknown. In this review, we summarise our current structural understandings of the arms race between the host and virus along the RNA silencing pathway in A. thaliana by focusing on several important ribonucleoprotein (RNP) structures involved in RNA silencing and unique structural features adopted by VSRs.  相似文献   

12.
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer -dependent and -independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.  相似文献   

13.
microRNA是生物内源性的非编码小RNA,选择性地作用于mRNA的3’非翻译区(UTR),对基因的表达起重要的调控作用。miR-132是发现较早的microRNA之一,我们对其在癌症、感染、心血管疾病、神经系统调节等众多生命过程中的作用进行简要综述。  相似文献   

14.
MicroRNAs are a class of small non-protein coding RNAs that play an important role in the regulation of gene expression. Most studies on the identification of microRNA-mRNA pairs utilize the correlation coefficient as a measure of association. The use of correlation coefficient is appropriate if the expression data are available for several conditions and, for a given condition, both microRNA and mRNA expression profiles are obtained from the same set of individuals. However, there are many instances where one of the requirements is not satisfied. Therefore, there is a need for new measures of association to identify the microRNA-mRNA pairs of interest and we present two such measures. The first measure requires expression data for multiple conditions but, for a given condition, the microRNA and mRNA expression may be obtained from different individuals. The new measure, unlike the correlation coefficient, is suitable for analyzing large data sets which are obtained by combining several independent studies on microRNAs and mRNAs. Our second measure is able to handle expression data that correspond to just two conditions but, for a given condition, the microRNA and mRNA expression must be obtained from the same set of individuals. This measure, unlike the correlation coefficient, is appropriate for analyzing data sets with a small number of conditions. We apply our new measures of association to multiple myeloma data sets, which cannot be analyzed using the correlation coefficient, and identify several microRNA-mRNA pairs involved in apoptosis and cell proliferation.  相似文献   

15.
  • Plant microRNAs are small RNAs that are important for genetic regulation of processes such as plant development or environmental responses. Specific microRNAs accumulate in the phloem during phosphate starvation, and may act as long‐distance signalling molecules.
  • We performed quantitative PCR on Arabidopsis hypocotyl micrograft tissues of wild‐type and hen1‐6 mutants to assess the mobility of several phosphate starvation‐responsive microRNA species.
  • In addition to the previously confirmed mobile species miR399d, the corresponding microRNA* (miR399d*) was identified for the first time as mobile between shoots and roots. Translocation by phosphate‐responsive microRNAs miR827 and miR2111a between shoots and roots during phosphate starvation was evident, while their respective microRNA*s were not mobile.
  • The results suggest that long‐distance mobility of microRNA species is selective and can occur without the corresponding duplex strand. Movement of miR399d* and root‐localised accumulation of miR2111a* opens the potential for persisting microRNA*s to be mobile and functional in novel pathways during phosphate starvation responses.
  相似文献   

16.
Argonaute proteins associate with microRNAs and are key components of gene silencing pathways. With such a pivotal role, these proteins represent ideal targets for regulatory post‐translational modifications. Using quantitative mass spectrometry, we find that a C‐terminal serine/threonine cluster is phosphorylated at five different residues in human and Caenorhabditis elegans. In human, hyper‐phosphorylation does not affect microRNA binding, localization, or cleavage activity of Ago2. However, mRNA binding is strongly affected. Strikingly, on Ago2 mutants that cannot bind microRNAs or mRNAs, the cluster remains unphosphorylated indicating a role at late stages of gene silencing. In C. elegans, the phosphorylation of the conserved cluster of ALG‐1 is essential for microRNA function in vivo. Furthermore, a single point mutation within the cluster is sufficient to phenocopy the loss of its complete phosphorylation. Interestingly, this mutant retains its capacity to produce and bind microRNAs and represses expression when artificially tethered to an mRNA. Altogether, our data suggest that the phosphorylation state of the serine/threonine cluster is important for Argonaute–mRNA interactions.  相似文献   

17.
MicroRNAs are important regulators of local protein synthesis during neuronal development. We investigated the dynamic regulation of microRNA production and found that the majority of the microRNA‐generating complex, consisting of Dicer, TRBP, and PACT, specifically associates with intracellular membranes in developing neurons. Stimulation with brain‐derived neurotrophic factor (BDNF), which promotes dendritogenesis, caused the redistribution of TRBP from the endoplasmic reticulum into the cytoplasm, and its dissociation from Dicer, in a Ca2+‐dependent manner. As a result, the processing of a subset of neuronal precursor microRNAs, among them the dendritically localized pre‐miR16, was impaired. Decreased production of miR‐16‐5p, which targeted the BDNF mRNA itself, was rescued by expression of a membrane‐targeted TRBP. Moreover, miR‐16‐5p or membrane‐targeted TRBP expression blocked BDNF‐induced dendritogenesis, demonstrating the importance of neuronal TRBP dynamics for activity‐dependent neuronal development. We propose that neurons employ specialized mechanisms to modulate local gene expression in dendrites, via the dynamic regulation of microRNA biogenesis factors at intracellular membranes of the endoplasmic reticulum, which in turn is crucial for neuronal dendrite complexity and therefore neuronal circuit formation and function.  相似文献   

18.
Expanding roles for miRNAs and siRNAs in cell regulation   总被引:6,自引:0,他引:6  
The role of small RNAs as key regulators of mRNA turnover and translation has been well established. Recent advances indicate that the small RNAs termed microRNAs play important roles in cell proliferation, apoptosis and differentiation. Moreover, the microRNA mechanism is an efficient means to regulate production of a diverse range of proteins. As new microRNAs and their mRNA targets rapidly emerge, it is becoming apparent that RNA-based regulation of mRNAs may rival ubiquitination as a mechanism to control protein levels.  相似文献   

19.
C. Luo  L. Sun  J. Ma  J. Wang  H. Qu  D. Shu 《Animal genetics》2015,46(3):265-271
MicroRNAs are an abundant class of small non‐coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR‐1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR‐1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga‐miR‐1596‐3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast‐growing commercial lines and the slow‐growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast‐growing and a slow‐growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga‐miR‐1596‐3p microRNA of miR‐1596 was significantly associated with RFI. These findings suggest that miR‐1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga‐miR‐1596‐3p microRNA in chicken.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号