首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.  相似文献   

2.
Understanding the coevolution of hosts and parasites is a long‐standing goal of evolutionary biology. There is a well‐developed theoretical framework to describe the evolution of host–parasite interactions under the assumption of direct, two‐species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host–parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade‐off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three‐species interactions to assess the role of defensive symbionts in host–parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear‐cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont‐conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont‐mediated coevolution between hosts and parasites.  相似文献   

3.
Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.  相似文献   

4.
Coevolution between hosts and parasites may promote the maintenance of genetic variation in both antagonists by negative frequency‐dependence if the host–parasite interaction is genotype‐specific. Here we tested for specificity in the interaction between parasitoids (Lysiphlebus fabarum) and aphid hosts (Aphis fabae) that are protected by a heritable defensive endosymbiont, the γ‐proteobacterium Hamiltonella defensa. Previous studies reported a lack of genotype specificity between unprotected aphids and parasitoids, but suggested that symbiont‐conferred resistance might exhibit a higher degree of specificity. Indeed, in addition to ample variation in host resistance as well as parasitoid infectivity, we found a strong aphid clone‐by‐parasitoid line interaction on the rates of successful parasitism. This genotype specificity appears to be mediated by H. defensa, highlighting the important role that endosymbionts can play in host–parasite coevolution.  相似文献   

5.
Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by ‘helpers’ such as bacterial endosymbionts. We investigated the costs of symbiont‐conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont‐conferred resistance. On the contrary, symbiont‐protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids.  相似文献   

6.
Beneficial symbioses are widespread and diverse in the functions they provide to the host ranging from nutrition to protection. However, these partnerships with symbionts can be costly for the host. Such costs, so called “direct costs”, arise from a trade‐off between allocating resources to symbiosis and other functions such as reproduction or growth. Ecological costs may also exist when symbiosis negatively affects the interactions between the host and other organisms in the environment. Although ecological costs can deeply impact the evolution of symbiosis, they have received little attention. The pea aphid Acyrthosiphon pisum benefits a strong protection against its main parasitoids from protective bacterial symbionts. The ecological cost of symbiont‐mediated resistance to parasitism in aphids was here investigated by analyzing aphid behavior in the presence of predatory ladybirds. We showed that aphids harboring protective symbionts expressed less defensive behaviors, thus suffering a higher predation than symbiont‐free aphids. Consequently, our study indicates that this underlined ecological cost may affect both the coevolutionary processes between symbiotic partners and the prevalence of such beneficial bacterial symbionts in host natural populations.  相似文献   

7.
The microbial symbionts of eukaryotes influence disease resistance in many host‐parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host‐parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host‐symbiont and symbiont‐pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co‐occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.  相似文献   

8.
9.
Insects harbour a wild diversity of symbionts that can spread and persist within populations by providing benefits to their host. The pea aphid Acyrthosiphon pisum maintains a facultative symbiosis with the bacterium Hamiltonella defensa, which provides enhanced resistance against the aphid parasitoid Aphidius ervi. Although the mechanisms associated with this symbiotic‐mediated protection have been investigated thoroughly, little is known about its evolutionary effects on parasitoid populations. We used an experimental evolution procedure in which parasitoids were exposed either to highly resistant aphids harbouring the symbiont or to low innate resistant hosts free of H. defensa. Parasitoids exposed to H. defensa gained virulence over time, reaching the same parasitism rate as those exposed to low aphid innate resistance only. A fitness reduction was associated with this adaptation as the size of parasitoids exposed to H. defensa decreased through generations. This study highlighted the considerable role of symbionts in host–parasite co‐evolutionary dynamics.  相似文献   

10.
1. Many insects host secondary bacterial symbionts that are known to have wide‐ranging effects on their hosts, from host‐plant use to resistance against natural enemies. This has been most widely studied in aphids, which have become a model system to study insect–bacteria interactions. 2. While there is an increasing understanding of the role of symbionts in aphids from controlled laboratory studies, we are only beginning to explore the impact of hosting these symbionts on eco‐evolutionary dynamics in natural systems. To date, many research groups have identified bacterial symbionts from various aphid species, providing us with a bank of literature on aphid–symbiont associations in natural populations. 3. The role of secondary symbionts in aphids is discussed, and the taxonomic and geographical distribution of symbionts among aphids are summarised, and the potential reasons for the patterns observed. The need to test for multiple symbiont species (and co‐infections) across many individuals and the whole distribution range of an aphid is highlighted, including sampling on all known host‐plant species. 4. It is further important also to consider variation within the symbiont, the aphid‐host and the surrounding community, e.g. host‐plants or the natural enemies, to understand how these have the potential to mediate aphid–symbiont interactions. 5. Finally, the knowledge gained from experimental work should now be used to understand the role of aphid secondary symbionts in field systems, to fully understand the potentially far‐reaching consequences of aphid endosymbionts on community and ecosystem processes.  相似文献   

11.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

12.
1. Microbial symbionts can play an important role in defending their insect hosts against natural enemies. However, researchers have little idea how the presence of such protective symbionts impacts food web interactions and species diversity. 2. This study investigated the effects of a protective symbiont (Hamiltonella defensa) in pea aphids (Acyrthosiphon pisum) on hyperparasitoids, which are a trophic level above the natural enemy target of the symbiont (primary parasitoids). 3. Pea aphids, with and without their natural infections of H. defensa, were exposed first to a primary parasitoid against which the symbiont provides partial protection (either Aphidius ervi or Aphelinus abdominalis), and second to a hyperparasitoid known to attack the primary parasitoid species. 4. It was found that hyperparasitoid hatch rate was substantially affected by the presence of the symbiont. This effect appears to be entirely due to the removal of potential hosts by the action of the symbiont: there was no additional benefit or cost experienced by the hyperparasitoids in response to symbiont presence. The results were similar across the two different aphid–parasitoid–hyperparasitoid interactions we studied. 5. It is concluded that protective symbionts can have an important cascading effect on multiple trophic levels by altering the success of natural enemies, but that there is no evidence for more complex interactions. These findings demonstrate that the potential influence of protective symbionts on the wider community should be considered in future food web studies.  相似文献   

13.
Symbiotic interactions between insects and bacteria have long fascinated ecologists. Aphids have emerged as the model system on which to study the effect of endosymbiotic bacteria on their hosts. Aphid‐symbiont interactions are ecologically interesting as aphids host multiple secondary symbionts that can provide broad benefits, such as protection against heat stress or specialist natural enemies (parasitic wasps and entomopathogenic fungi). There are nine common aphid secondary symbionts and individual aphids host on average 1–2 symbionts. A cost‐benefit trade‐off for hosting symbionts is thought to explain why not all aphids host every possible symbiont in a population. Both positive and negative associations between various symbionts occur, and this could happen due to increased costs when cohosting certain combinations or as a consequence of competitive interactions between the symbionts within a host. In this issue of Molecular Ecology, Mathé‐Hubert, Kaech, Hertaeg, Jaenike, and Vorburger (2019) use data on the symbiont status of field‐collected aphids to inform a model on the evolution of symbiont co‐occurrence. They vary the effective female population size as well as the rate of horizontal and maternal transmission to infer the relative impact of symbiont‐symbiont interactions versus random drift. Additional data analysis revisits an association between two symbionts in a fruit fly species using a long‐term data set to highlight that such interactions are not limited to aphids.  相似文献   

14.
1. Hosts are often targeted by multiple species of parasites, leading to a confluence of selective pressures on them. In response, hosts may either evolve defences that act very generally, or specific defences against particular parasites. Aphids are attacked by multiple species of endoparasitoid wasps, and there is clear evidence that heritable endosymbionts can confer resistance against some of these wasps. Less clear is how symbiont‐conferred resistance in a single host acts against multiple parasitoid species. 2. This question was addressed in the black bean aphid, Aphis fabae (Scopoli). Unprotected aphids and aphids protected by three different strains of the defensive endosymbiont Hamiltonella defensa were exposed to four species of parasitic wasps: the parthenogenetic species Lysiphlebus fabarum (Marshall), which was represented by three different asexual lines, and the sexual species Aphidius colemani (Viereck), Binodoxys angelicae (Halliday), and Aphelinus chaonia (Walker). 3. Hamiltonella defensa provided strong protection against L. fabarum and Aphidius colemani, but there was no evidence that H. defensa‐infected aphids were more resistant to the other parasitoid species. While Aphidius colemani was virtually unable to parasitise any aphids harbouring H. defensa, there was variation among the three asexual lines of L. fabarum in how susceptible they were to the defence provided by the different symbiont strains, resulting in a significant genotype‐by‐genotype interaction. 4. The present results suggest that symbiosis with H. defensa does not provide aphids with a general defence against parasitoid wasps, possibly because some species have evolved specific counter adaptations or because biological differences preclude the symbiont's effectiveness against these species.  相似文献   

15.
Maternally transmitted symbionts can spread in host populations if they provide a fitness benefit to their hosts. Hamiltonella defensa, a bacterial endosymbiont of aphids, protects hosts against parasitoids but only occurs at moderate frequencies in most aphid populations. This suggests that harbouring this symbiont is also associated with costs, yet the nature of these costs has remained elusive. Here, we demonstrate an important and clearly defined cost: reduced longevity. Experimental infections with six different isolates of H. defensa caused strongly reduced lifespans in two different clones of the black bean aphid, Aphis fabae, resulting in a significantly lower lifetime reproduction. However, the two aphid clones were unequally affected by the presence of H. defensa, and the magnitude of the longevity cost was further determined by genotype × genotype interactions between host and symbiont, which has important consequences for their coevolution.  相似文献   

16.
1. In solitary parasitoids, only one individual can complete development in a given host. Therefore, solitary parasitoids tend to prefer unparasitised hosts for oviposition, yet under high parasitoid densities, superparasitism is frequent and results in fierce competition for the host's limited resources. This may lead to selection for the best intra‐host competitors. 2. Increased intra‐host competitive ability may evolve under a high risk of superparasitism if this trait exhibits genetic variation, and if competitive differences among parasitoid genotypes are consistent across environments, e.g. different host genotypes. 3. These assumptions were addressed in the aphid parasitoid Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae) and its main host, the black bean aphid, Aphis fabae (Scopoli) (Hemiptera: Aphididae). Three parthenogenetic lines of L. fabarum were allowed to parasitise three aphid clones singly and in all pairwise combinations (superparasitism). The winning parasitoid in superparasitised aphids was determined by microsatellite analysis. 4. The proportions of singly parasitised aphids that were mummified were similar for the three parasitoid lines and did not differ significantly among host clones. 5. Under superparasitism, significant biases in favour of one parasitoid line were observed for some combinations, indicating that there is genetic variation for intra‐host competitive ability. However, the outcome of superparasitism was inconsistent across aphid clones and thus influenced significantly by the host clone in which parasitoids competed. 6. Overall, this study shows that the fitness of aphid parasitoids under superparasitism is determined by complex interactions with competitors as well as hosts, possibly hampering the evolution of improved intra‐host competitive ability.  相似文献   

17.
Aphids harbour both an obligate bacterial symbiont, Buchnera aphidicola, and a wide range of facultative ones. Facultative symbionts can modify morphological, developmental and physiological host traits that favour their spread within aphid populations. We experimentally investigated the idea that symbionts may also modify aphid behavioural traits to enhance their transmission. Aphids exhibit many behavioural defences against enemies. Despite their benefits, these behaviours have some associated costs leading to reduction in aphid reproduction. Some aphid individuals harbour a facultative symbiont Hamiltonella defensa that provides protection against parasitoids. By analysing aphid behaviours in the presence of parasitoids, we showed that aphids infected with H. defensa exhibited reduced aggressiveness and escape reactions compared with uninfected aphids. The aphid and the symbiont have both benefited from these behavioural changes: both partners reduced the fitness decrements associated with the behavioural defences. Such symbiont-induced changes of behavioural defences may have consequences for coevolutionary processes between host organisms and their enemies.  相似文献   

18.
Mutualisms with facultative, non-essential heritable microorganisms influence the biology of many insects, and they can have major effects on insect host fitness in certain situations. One of the best-known examples is found in aphids where the facultative endosymbiotic bacterium Hamiltonella defensa confers protection against hymenopterous parasitoids. This symbiont is widely distributed in aphids and related insects, yet its defensive properties have only been tested in two aphid species. In a wild population of the grain aphid, Sitobion avenae, we identified several distinct strains of endosymbiotic bacteria, including Hamiltonella. The symbiont had no consistent effect on grain aphid fecundity, though we did find a significant interaction between aphid genotype by symbiont status. In contrast to findings in other aphid species, Hamiltonella did not reduce aphid susceptibility to two species of parasitoids (Aphidius ervi and Ephedrus plagiator), nor did it affect the fitness of wasps that successfully completed development. Despite this, experienced females of both parasitoid species preferentially oviposited into uninfected hosts when given a choice between genetically identical individuals with or without Hamiltonella. Thus, although Hamiltonella does not always increase resistance to parasitism, it may reduce the risk of parasitism in its aphid hosts by making them less attractive to searching parasitoids.  相似文献   

19.
Abstract.— Previous studies of phylogenetic congruence between aphids and their symbiotic bacteria ( Buchnera ) supported long-term vertical transmission of symbionts. However, those studies were based on distantly related aphids and would not have revealed horizontal transfer of symbionts among closely related hosts. Aphid species of the genus Uroleucon are closely related phylogenetically and overlap in geographic ranges, habitats, and parasitoids. To examine support for congruence of phylogenies of Buchnera and Uroleucon , sequences from four mitochondrial, one nuclear, and one endosymbiont gene ( trpB ) were obtained. Congruence of phylogenies based on pooled aphid genes with phylogenies based on trpB was highly significant: Most nodes resolved by trpB corresponded to nodes resolved by the pooled aphid genes. Furthermore, no nodes were both inconsistent between the trees and strongly supported in both trees. Two kinds of analyses testing the null hypothesis of perfect congruence between pairwise combinations of datasets and tree topologies were performed: the Kishino-Hasegawa test and the likelihood-ratio test. Both tests indicated significant disagreement among most pairwise combinations of mitochondrial, nuclear, and symbiont datasets. Because rampant recombination among mitochondrial genomes of different aphid species is unlikely, inaccurate assumptions in the evolutionary models underlying these tests appear to be causing the hypothesis of a shared history to be incorrectly rejected. Moreover, trpB was more consistent with the aphid genes as a set than any single aphid gene was with the others, suggesting that the symbionts show the same phylogeny as the aphids. Overall, analyses support the interpretation that symbionts and aphids have undergone strict cospeciation, with no horizontal transmission of symbionts even among closely related, ecologically similar aphid hosts.  相似文献   

20.
Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号