首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
1. Information on the guild structure of foliage‐associated tropical insects is scarce, especially as caterpillars are mostly considered only as herbivores feeding on living leaves. However, many caterpillar species display alternative trophic associations, feeding on dead or withered leaves or epiphylls (‘non‐herbivores’). 2. To determine the contribution of these non‐herbivores, caterpillar communities associated with Chusquea Kunth (Poaceae) in the Andes of southern Ecuador were investigated. Caterpillars were collected at two elevation levels (montane rainforest ~2000 m and elfin forest at ~3000 m a.s.l.) and assigned to three feeding guilds (strict herbivores, non‐herbivores, and switchers) based on feeding trials. Foliage quality and leaf area were recorded to test for their influence on guild composition and caterpillar density. 3. Three hundred and eighty‐nine individuals belonging to 175 Lepidoptera species associated with Chusquea bamboos were found. The species richness of caterpillars was similarly high at both elevation levels but varied between feeding guilds. Approximately half (46.5%) displayed an alternative feeding association, i.e. were non‐herbivores (31.1%) or switchers (15.4%). 4. Caterpillar density was nearly two‐fold higher in the elfin forest, but only strict herbivores and switchers increased significantly with elevation. Leaf area positively influenced the density of strict herbivores and switchers; foliage quality only affected strict herbivores. The density of non‐herbivores did not differ significantly between the forest types and was not related to leaf area or foliage quality. 5. The present study underpins that non‐herbivores make up a considerable fraction of caterpillar communities in tropical mountain ecosystems and demonstrates that elevation, foliage quality and available plant biomass further shape feeding guild composition.  相似文献   

2.
Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2–3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.  相似文献   

3.
The specialization of herbivores among tree species is poorly understood despite its fundamental importance as a factor regulating diversity. To examine the effect of tree species on larval community structure, the larval communities in 10 temperate deciduous tree species that differed in leaf emergence pattern (flush- vs. intermediate-type) were seasonally surveyed. The newly developed soft, nitrogen-rich leaves of all species became tough and nitrogen-poor as the season progressed. Following the changes in leaf quality, two distinct seasonal lepidopteran larval communities emerged, with a marked turnover in early July. The beta diversity, or dissimilarity, of species composition in the larval communities among tree species was higher in summer than in spring. These results imply that the lepidopteran larval communities as a whole were supported by alpha diversity in spring and by beta diversity in summer, demonstrating that the plant diversity of this forest could support a caterpillar community. We examined the importance of spatio-temporal variations in leaf quality within and among tree species in promoting herbivore diversity, although other factors, such as tree species phylogeny and predators, may also have a large effect on lepidopteran larval communities.  相似文献   

4.
Abstract. 1. Most lepidopterous leaf mining species found on the oak Quercus robur in Britain develop in summer. At this time of year, externally feeding caterpillars remove little leaf area since most of these free living folivores are predominantly spring feeders.
2. I forced Phyllonorycter harrisella (L.) miners to oviposit in spring, then exposed developing larvae to a wide range of leaf damage levels.
3. Leaf miner survivorship and mean female pupal weight were significantly greater in the experimental spring generation on undamaged oak leaves, this being when oak foliage is of the highest nutritional quality.
4. Leaf miner survivorship in all generations is correlated with natural leaf damage levels. Experimental leaf damage also reduces miner survivorship.
5. Leaf damage reduces miner survivorship by increasing the probability of larval death due to wound induced responses.
6. The role of asymmetrical competitive interactions between caterpillars and leaf-miners in determining the late seasonal appearance of miners is discussed. It is suggested that wound induced responses may play an important part in the structuring of phytophagous insect communities.  相似文献   

5.
To evaluate the responses of Quercus crispula and Quercus dentata to herbivory, their leaves were subjected to simulated herbivory in early spring and examined for the subsequent changes in leaf traits and attacks by chewing herbivores in mid summer. In Quercus crispula, nitrogen content per area was higher in artificially damaged leaves than in control leaves. This species is assumed to increase the photosynthetic rate per area by increasing nitrogen content per area to compensate leaf area loss. In Quercus dentata, nitrogen content per area did not differ between artificially damaged and control leaves, while nitrogen content per mass was slightly lower in artificially damaged leaves. The difference in their responses can be attributable to the difference in the architecture of their leaves and/or the severeness of herbivory. The development of leaf area from early spring to mid summer was larger in artificially damaged leaves than in control leaves in both species, suggesting the compensatory response to leaf area loss. Leaf dry mass per unit area was also larger in artificially damaged leaves in both species, but the adaptive significance of this change is not clear. In spite of such changes in leaf traits, no difference was detected in the degree of damage by chewing herbivores between artificially damaged and controlled leaves in both species.  相似文献   

6.
Abstract.  1. Lepidoptera larval abundance and diversity in the canopies of oak ( Quercus crispula ) trees and saplings were surveyed in a cool-temperate, deciduous broadleaf forest in northern Japan.
2. In general, newly developed leaves were soft, rich in water and nitrogen, and low in tannin, whereas they became tough, poor in water and nitrogen, and high in tannin as the season proceeded. Leaf quality also varied among forest strata, such variations resulting in seasonal and among-strata differences in the structure of the Lepidoptera larval assemblage.
3. The greater Lepidoptera larval abundance and species richness may related to the higher leaf quality on spring foliage compared with summer foliage. On the other hand, diversity (Shannon's H' ) and evenness (Pielou's J' ) were greater on summer foliage than on spring foliage. Strengthened defences of the host plants against herbivory may cause these differences by filtering the larvae of Lepidoptera species and by constraining the super-dominance of a few species on summer foliage.
4. Canonical Correspondence Analysis (CCA) ordination also revealed a stratified structure of the Lepidoptera larval assemblage in the forest. In both spring and summer, the assemblage composition was more similar between sunlit and shaded canopies than between canopies and saplings. Such assemblage stratification was highly correlated with toughness and tannin content (in spring and summer) or water content (in summer).
5. This study emphasised the importance of spatio-temporal variations in leaf quality, even within the same host plant species, for promoting herbivore diversity in forests.  相似文献   

7.
The effect of the canopy on leaf decomposition of beech (t Fagus sylvatica) and melojo oak (t Quercus pyrenaica) was studied during a period of 660 days in a mountain forest of central Spain; response of leaves to leaching was also studied to determine the effects of rainfall after leaf fall. Beech leaves lost 5.8% of their weight by leaching, whereas melojo oak leaves lost 13%. Under both types of canopy, beech leaves showed almost no difference in their decomposition patterns, with decay constants of 0.31 and 0.32 respectively. Melojo oak leaves showed quite a different behaviour under both canopies; decay constant was 0.47 under t Quercus pyrenaica and 0.77 under beech canopy. Total immobilization of nitrogen was less in the melojo oak forest. Effects of summer dryness were sharper in the melojo oak forest, where decomposition stopped during the summer. This delay in the decomposition might have been due to the lower canopy density in the melojo oak forest. The decomposition patterns of the leaves of both species, under the canopy of the other species, suggests what might happen in mixed stands. Thus, the presence of melojo oaks in beech forest would increase decay and decrease nitrogen immobilization. The presence of beech trees in melojo oak forests would improve microclimatic conditions and increase decay, whereas beech litter on the soil would immobilizate more nitrogen.  相似文献   

8.
Abstract Water stress usually arrests growth of even the most deep‐rooted species during summer drought in Mediterranean‐type climates. However, scant evidence suggests that grasstrees may represent an unusual exception. We used weather data and plant water potential to investigate the relationship between leaf growth and season in the grasstree, Xanthorrhoea preissii Endl. (Xanthorrhoeaceae). Leaf production in two contrasting habitats revealed continuous annual growth, oscillating between maximum rates (2.5–3.2 leaves/d) in late‐spring to autumn, to a minimum rate of 0.5 leaf/d during winter but never stopping. While the rate of leaf production during the fast‐growth season was positively correlated with temperature above 17–18°C, leaf elongation commenced substantially earlier in the year (from 12°C). Leaf water potentials cycled annually, with predawn readings commonly measured as zero during winter–spring and as low as ?1.26 MPa during summer, but never indicating stress by exceeding the turgor loss point. Leaf death was synchronized with summer drought. The fast (summer) growth period was characterized by rapidly fluctuating leaf production, particularly in banksia woodland, where plant growth reliably responded quickly to >18 mm of rainfall. Within 24 h of 59 mm of simulated rainfall, grasstrees in banksia woodland showed a marked increase in water potential, and leaf production reached 7.5 times the controls, confirming their capacity to respond to temporary spasmodic summer rains. Rainfall was the best climatic variable for predicting woodland grasstree leaf production during summer, whereas leaf production of forest grasstrees was most closely correlated with daylength. This plastic response of grasstrees between seasonal weather extremes is relatively rare among other mediterranean floras, and has implications for a recently proposed technique for ageing grasstrees.  相似文献   

9.
The herbivore assemblage, intensity of herbivory and factors determining herbivory levels on the mangrove Kandelia obovata (previously K. candel, Rhizophoraceae) were studied over a 13-month period at two forests with contrasting growing conditions in Hong Kong. Mai Po was part of an eutrophic embayment in the Pearl River estuary and generally offered more favourable conditions for mangrove growth, whereas Ting Kok had a rocky substratum and oceanic salinity. Twenty-four insect herbivore species were recorded on K. obovata, with lepidopteran larvae that consume leaf lamina being the dominant species. While leaf litter production was similar at the two forests, herbivory level at Mai Po (mean = 3.9% in terms of leaf area loss) was more severe than that at Ting Kok (mean = 2.3%). Peak herbivory levels were found in summer at both locations (6.5% for Mai Po and 3.8% for Ting Kok). Young leaves of K. obovata at both locations were generally preferred by the herbivores from the period of late spring to summer. Concentrations of most feeding deterrents (ash, crude fibre, and total soluble tannins) were significantly higher in both young and mature leaves at Ting Kok, whereas leaf nutrients (total nitrogen and water) were the same at the two sites. Young leaves at Ting Kok contained about 30% more tannins than their counterparts at Mai Po. Significant differences in leaf chemistry also existed between young and mature leaves at either site. The differences were concomitant with the observed patterns of leaf herbivory on K. obovata, and suggest a potential relationship between environmental quality and plant defence against herbivory.  相似文献   

10.
南亚热带地带性植被是季风常绿阔叶林(海拔300~600 m;简称季风林),在中山地带则分布为山地常绿阔叶林(海拔1 000~1 500 m;简称山地林)。山地林的生态价值日益受到重视,但是对其树种的环境适应性仍缺乏足够了解。该研究基于南亚热带典型山地林(广西大明山)和季风林(广东鼎湖山)的固定样地,共测定57种代表性树种的叶形态解剖特征、机械强度和水力学性状,比较不同海拔常绿阔叶林树种叶性状以及多类性状关联性的差异。结果表明,与季风林树种相比,山地林树种叶较厚、比叶面积较小、机械强度较高,有利于提高对较高海拔山区冬季冰冻的适应能力。在2022年夏季持续高温干旱时期,季风林树种的叶水势和水力安全边界均低于山地林。但是大部分树种水力安全边界为正值且种间变异较大,表明不同海拔常绿阔叶林的水力风险较低。不同海拔常绿阔叶林的叶性状网络不同,山地林树种叶水力安全性和效率性无权衡关系,而季风林树种叶经济学性状(如比叶面积)与其他指标的关联性较弱。基于叶性状的研究揭示了南亚热带不同海拔常绿阔叶林树种适应策略的差异性和多样性。  相似文献   

11.
A field experiment was conducted to examine the effects of habitat fragmentation on herbivore damage to individually tagged leaves of Betonica officinalis rosettes. Fragments of different size and corresponding control plots were established at three study sites in nutrient-poor calcareous grasslands in the northern Swiss Jura mountains. Leaf damage was recorded three times over the growing season (late spring, summer and early autumn). Five years after the initiation of the fragmentation, the density of rosettes did not differ between fragments and control plots. The number of leaves per rosette was higher in fragments than in control plots in summer but not in late spring and early autumn. The extent of leaf damage, expressed as proportion of leaf area removed by invertebrate herbivores, increased over the vegetation period. Leaf damage was greater in fragments than in control plots at two study sites, whereas the opposite (less strongly expressed) was found at the third site. Number of species and density (individuals per m2) of potential herbivores (gastropods and grasshoppers) were recorded in all fragments and control plots. Effects of fragmentation on the number of species and densities depended on plot size and differed between gastropods and grasshoppers. Leaf damage in fragments increased with increasing density of gastropods if the third site, which had lowest leaf damage, was excluded. Such a positive relationship was neither found in control plots nor for grasshopper densities. Thus, movement of gastropods in fragments was probably restricted which resulted in increased feeding pressure at least in two sites. However, even if our fragmentation experiment was well designed and replicated, the interpretation of these experimental results remains difficult because there was large site-to-site and seasonal variation.  相似文献   

12.
Recent findings suggest that impacts of endemic herbivory on forest ecosystems over the long term may exceed impacts of herbivore outbreaks. However, responses of trees to minor and local damage imposed by small arthropod herbivores, especially by those mining or skeletonising individual leaves, remain poorly understood. We studied the delayed effects of injuries by several leafmining and leafrolling insects on the performance of downy birch shoots. Insect feeding did not affect survival of shoots or survival of individual axillary buds in long shoots. In the year following the damage, shoots produced an average of 13.8% more biomass than undamaged shoots of the same tree. The magnitude of this effect increased with an increase in the leaf area injured during the previous year, but it did not differ among four localities in subarctic and boreo‐nemoral forests, between herbivore feeding guilds, or among herbivores imposing damage in early, mid and late summer. We also found that herbivores attacked the next‐year foliage produced by damaged shoots less frequently than they attacked the next‐year foliage produced by undamaged shoots of the same tree. Thus, our study demonstrated delayed local compensatory growth and increased antiherbivore defence in downy birch shoots following local damage by insect feeding. We suggest that this pattern reflects evolutionary adaptations of plants to permanently acting minor, dispersed and spatially unpredictable damage imposed by endemic herbivory. Local responses are less costly and represent a more sustainable strategy to maintain plant fitness under low levels of herbivory than constitutive resistance or systemic responses.  相似文献   

13.
Leaf morphology, longevity, and demography were examined in Quercus ilex and Phillyrea latifolia growing in a holm oak forest in Prades mountains (northeast Spain). Four plots (10 × 15 m) of this forest were submitted to an experimental drought during three years (soil moisture was reduced about 15 %). Leaf area, thickness and leaf mass per area ratio (LMA) were measured in sun and shade leaves of both species. Leaf longevity, the mean number of current-year shoots produced per previous-year shoot (Sn/Sn-1), the mean number of current-year leaves per previous-year shoot (Ln/Sn-1), and the percentage of previous-year shoots that developed new ones were measured once a year, just after leaf flushing. LMA and leaf thickness increased since leaf unfolding except in summer periods, when stomatal closure imposed low photosynthetic rates and leaves consumed their reserves. LMA, leaf area, and leaf thickness were higher in Q. ilex than in P. latifolia, but leaf density was higher in the latter species. Drought reduced the leaf thickness and the LMA of both species ca. 2.5 %. Drought also increased leaf shedding up to ca. 20 % in Phillyrea latifolia and decreased it up to ca. 20 % in Q. ilex. In the later species, Sn/Sn-1 decreased by 32 %, Ln/Sn-1 by 41 %, percentage of shoots developed new ones by 26 %, and leaf area by 17 %. Thus the decrease of leaf number and area was stronger in the less drought-resistant Q. ilex, which, under increasingly drier conditions, might lose its current competitive advantage in these Mediterranean holm oak forests.  相似文献   

14.
Leaf miners typically show non-random distributions both between and within plants. We tested the hypothesis that leaf miners on two oak species were clumped on individual host trees and individual branches and addressed whether clumping was influenced by aspects of plant quality and how clumping and/or interactions with other oak herbivores affected leaf-miner survivorship. Null models were used to test whether oak herbivores and different herbivore guilds co-occur at the plant scale. Twenty individual Quercus geminata plants and 20 Quercus laevis plants were followed over the season for the appearance of leaf miners and other herbivores, and foliar nitrogen, tannin concentration, leaf toughness and leaf water content were evaluated monthly for each individual tree. The survivorship of the most common leaf miners was evaluated by following the fate of marked mines in several combinations that involved intra- and inter-specific associations. We observed that all leaf miners studied were clumped at the plant and branch scale, and the abundance of most leaf-miner species was influenced by plant quality traits. Mines that occurred singly on leaves exhibited significantly higher survivorship than double and triple mines and leaves that contained a mine or a leaf gall and a mine and damage by chewers exhibited lowest survivorship. Although leaf miners were clumped at individual host trees, null model analyses indicated that oak herbivores do not co-occur significantly less than expected by chance and there was no evidence for biological mechanisms such as inter-specific competition determining community structure at the plant scale. Thus, despite co-occurrence resulting in reduced survivorship at the leaf scale, such competition was not strong enough to structure separation of these oak herbivore communities.  相似文献   

15.
Leaf flushing during the dry season: the paradox of Asian monsoon forests   总被引:3,自引:0,他引:3  
Aim Most deciduous species of dry monsoon forests in Thailand and India form new leaves 1–2 months before the first monsoon rains, during the hottest and driest part of the year around the spring equinox. Here we identify the proximate causes of this characteristic and counterintuitive ‘spring‐flushing’ of monsoon forest trees. Location Trees of 20 species were observed in semi‐deciduous dry monsoon forests of northern Thailand with a 5–6‐month‐long severe dry season and annual rainfall of 800–1500 mm. They were growing on dry ridges (dipterocarp–oak forest) or in moist gullies (mixed deciduous–evergreen forest) at 680–750 m altitude near Chiang Mai and in a dry lowland stand of Shorea siamensis in Uthai Thani province. Methods Two novel methods were developed to analyse temporal and spatial variation in vegetative dry‐season phenology indicative of differences in root access to subsoil water reserves. Results Evergreen and leaf exchanging species at cool, moist sites leafed soon after partial leaf shedding in January–February. Drought‐resistant dipterocarp species were evergreen at moist sites, deciduous at dry sites, and trees leafed soon after leaf shedding whenever subsoil water was available. Synchronous spring flushing of deciduous species around the spring equinox, as induced by increasing daylength, was common in Thailand's dipterocarp–oak forest and appears to be prevalent in Indian dry monsoon forests of the Deccan peninsula with its deep, water‐storing soils. Main conclusions In all observed species leafing during the dry season relied on subsoil water reserves, which buffer trees against prolonged climatic drought. Implicitly, rainfall periodicity, i.e. climate, is not the principal determinant of vegetative tree phenology. The establishment of new foliage before the summer rains is likely to optimize photosynthetic gain in dry monsoon forests with a relatively short, wet growing season.  相似文献   

16.
During a 15-month behavioral study in Morocco and a 3-month survey in Morocco and Algeria, the present distribution of the Barbary macaque was determined. In Algeria, monkeys are found in seven constricted and disjunct localities in the Grande and Petite Kabylie mountain ranges. These localities are severely restricted in space and are located in remote or inaccessible areas which support only small populations. Their habitats include mixed cedar and holm oak forests, humid Portuguese and cork oak mixes and gorges dominated by scrub vegetation. In only two regions (Guerrouch and Agfadou) can population of reasonable size be found; even there they do not approach the abundance found in the central Middle Atlas zone of Morocco. Distribution was more extensive earlier in this century and some areas have become unoccupied within the past 15 years. Today, their absolute numbers and population densities are low in all but two locations. Algeria contains approximately 23% (5,500 maximum) of the total number of surviving Barbary macaques in North Africa. About 77% of the total number of Barbary macaques occur in Morocco. Moroccan habitats include high cedar forests, cedar/holm-oak mixtures and pure holm oak forests. Macaque distribution in the High Atlas is restricted to the Ourika valley where only a small relict population survives. There are between five and eight small, disjunct forest pockets in the Rif which support small groups of monkeys. In the Middle Atlas, monkeys are found in high numbers and in relatively wide stretches of distribution, although there are constricted areas of low densities in this region also. 65% (14,000 maximum) of the animals and their highest densities occur in the high mixed cedar forests of the Central zone, and mixed cedar forest appears to be the preferred habitat for the species. With the exception of the Central zone, their remaining distribution is typically disjunct and constricted, and population densities aer low. As in Algeria, distribution in Morocco was wider earlier this century, and several areas have recently become unoccupied.  相似文献   

17.
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner‐Alpine regions, the species composition in low elevation forests is changing: The sub‐boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub‐Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger‐scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed‐effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small‐diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.  相似文献   

18.
Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.  相似文献   

19.
Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid‐1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid‐1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid‐1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid‐1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply.  相似文献   

20.
Stand diversification is considered a promising management approach to increasing the multifunctionality and ecological stability of forests. However, how tree diversity affects higher trophic levels and their role in regulating forest functioning is not well explored particularly for (sub)tropical regions. We analyzed the effects of tree species richness, community composition, and functional diversity on the abundance, species richness, and beta diversity of important functional groups of herbivores and predators in a large-scale forest biodiversity experiment in south-east China. Tree species richness promoted the abundance, but not the species richness, of the dominant, generalist herbivores (especially, adult leaf chewers), probably through diet mixing effects. In contrast, tree richness did not affect the abundance of more specialized herbivores (larval leaf chewers, sap suckers) or predators (web and hunting spiders), and only increased the species richness of larval chewers. Leaf chemical diversity was unrelated to the arthropod data, and leaf morphological diversity only positively affected oligophagous herbivore and hunting spider abundance. However, richness and abundance of all arthropods showed relationships with community-weighted leaf trait means (CWM). The effects of trait diversity and CWMs probably reflect specific nutritional or habitat requirements. This is supported by the strong effects of tree species composition and CWMs on herbivore and spider beta diversity. Although specialized herbivores are generally assumed to determine herbivore effects in species-rich forests, our study suggests that generalist herbivores can be crucial for trophic interactions. Our results indicate that promoting pest control through stand diversification might require a stronger focus on identifying the best-performing tree species mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号