首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
We wanted to test whether Mollitrichosiphum, an aphid genus with life cycles on subtropical woody host plants, and Buchnera, the primary endosymbiont of aphids, evolve in parallel. We used three aphid genes (mitochondrial COI, cytochrome oxidase subunit I and Cytb, cytochrome b; nuclear EF1α, translation elongation factor 1 alpha) and two Buchnera genes (16S rDNA; gnd, gluconate‐6‐phosphate dehydrogenase) to reconstruct phylogenies. The congruence between the phylogenetic trees of aphids and Buchnera was then measured. The results present phylogenetic evidence for the parallel evolution of Mollitrichosiphum and Buchnera at the intraspecific as well as the interspecific levels. Our results support the possibility of using endosymbiont genes to study host evolutionary history and biogeographical patterns. We also investigated the usability of the Buchnera gnd gene as a barcoding marker for aphid identification.  相似文献   

2.
Summary We examined the capacity of the galling aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). A series of 14C-labeling experiments and a biomass allocation experiment showed that P. betae galls functioned as physiologic sinks, drawing in resources from surrounding plant sources. Early gall development was dependent on aphid sinks increasing allocation from storage reserves of the stem, and later development of the progeny within the gall was dependent on resources from the galled leaf blade and from neighboring leaves. Regardless of gall position within a leaf, aphids intercepted 14C exported from the galled leaf (a non-mobilized source). However, only aphid galls at the most basal site of the leaf were strong sinks for 14C fixed in neighboring leaves (a mobilized source). Drawing resources from neighboring leaves represents active herbivore manipulation of normal host transport patterns. Neighboring leaves supplied 29% of the 14C accumulating in aphids in basal galls, while only supplying 7% to aphids in distal galls. This additional resource available to aphids in basal galls can account for the 65% increase in progeny produced in basal galls compared to galls located more distally on the leaf and limited to the galled leaf as a food resource. Developing furits also act as skins and compete with aphid-induced sinks for food supply. Aphid success in producing galls was increased 31% when surrounding female catkins were removed.  相似文献   

3.
4.
Rhus gall aphids (Fordinae : Melaphidini) have a disjunct distribution in East Asia and North America and have specific host plant relationships. Some of them are of economic importance and all species form sealed galls which show great variation in shape, size, structure, and galling‐site. We present a phylogeny incorporating ten species and four subspecies of Rhus gall aphids based on 1694 base pairs of nuclear elongation factor‐1α (EF1α) and mitochondrial cytochrome oxidase subunit II (COII) DNA sequence data. The results suggest that Melaphidini is monophyletic and at the genus level, Schlechtendalia, Nurudea, and Floraphis were each monophyletic. Kaburagia and Meitanaphis were not monophyletic and therefore inconsistent with the current classification. The North American sumac gall aphid, Melaphis rhois, was most closely related to the East Asian Floraphis species, although this was poorly supported. The conservation of gall morphology with respect to aphid phylogeny rather than their host plants suggests that gall morphology is largely determined by the aphids. While there is no evidence of strict co‐speciation between the aphids and their primary host plants, switching between recently diverged host plants may be involved in the speciation process in Melaphidini.  相似文献   

5.
Aphids of the tribe Eriosomatini are typically associated with the tree genera Ulmus and Zelkova as the primary host, on which they induce several types of leaf gall. To elucidate evolutionary changes in the aphid–host associations and gall morphology, phylogenetic relationships were inferred using 36 species (28 in the ingroup) and based on 52 morphological characters. Phylogenetic analysis with equal character weighting led to hundreds of most‐parsimonious trees, and the strict consensus of these was poorly resolved. However, the successive weighting of characters yielded three most‐parsimonious trees. The strict consensus of these supported the monophyly of the Eriosomatini and the monophyly of most genera. Reconstruction of the aphid–host associations on the consensus tree indicated that the ancestral Eriosomatini were associated with Zelkova and that the association with Ulmus evolved twice independently. Ancestral reconstruction suggests that galls of the leaf‐roll type are ancestral to those of the completely and incompletely closed pouch type, and that each type of pouch galls evolved independently. It is suggested that despite early diversification of the Eriosomatini on Zelkova species, Zelkova‐associated eriosomatines had become extinct or survived as relict parthenogens on the secondary host due to the elimination of Zelkova in most regions since the late Tertiary. In contrast, two large genera in the Eriosomatini, Eriosoma and Tetraneura, are associated with the largest elm section Ulmus whose elements are distributed widely in Eurasia, including boreal regions. Therefore, the available evidence suggests that the present species diversity and distribution patterns of the eriosomatines have been largely affected by the diversification and extinction of their host plants during the late Tertiary and Quaternary.  相似文献   

6.
We examined how the galling aphid Pemphigus batae manipulates resource translocation patterns of resistant and susceptible narrowleaf cottonwood Populus angustifolia. Using carbon-14 (14C)-labeling experiments in common garden trials, five patterns emerged. First, although aphid galls on resistant and susceptible genotypes did not differ in their capacity to intercept assimilates exported from the leaf they occupied, aphids sequestered 5.8-fold more assimilates from surrounding leaves on susceptible tree genotypes compared to resistant genotypes. Second, gall sinks on the same side of a shoot as a labeled leaf were 3.4-fold stronger than gall sinks on the opposite side of a shoot, which agrees with patterns of vascular connections among leaves of the same shoot (orthostichy). Third, plant genetic-based traits accounted for 26% of the variation in sink strength of gall sinks and 41% of the variation in sink strength of a plant’s own bud sinks. Fourth, tree susceptibility to aphid gall formation accounted for 63% of the variation in 14C import, suggesting strong genetic control of sink–source relationships. Fifth, competition between two galls was observed on a susceptible but not a resistant tree. On the susceptible tree distal aphids intercepted 1.5-fold more 14C from the occupied leaf than did basal aphids, but basal aphids compensated for the presence of a distal competitor by almost doubling import to the gall from surrounding leaves. These findings and others, aimed at identifying candidate genes for resistance, argue the importance of including plant genetics in future studies of the manipulation of translocation patterns by phytophageous insects.  相似文献   

7.
Abstract Mediterranean representatives of the galling aphid tribe Fordini (Hemiptera: Aphididae: Eriosomatinae) are usually grouped under the subtribe term Fordina. Aphids within Fordina display two‐year life cycles, alternating between Pistacia shrubs, where they induce conspicuous galls, and roots of Poaceae species. The high number of morphs present in a given species, the lack of knowledge of the complete cycle in some species, and the similarity between homologous morphs observed in different species pose many taxonomic problems in this group. We present results of a survey to elucidate the phylogenetic relationships among Fordini species present in the Iberian Peninsula and the Canary Islands. Sequences from the nuclear long‐wavelength opsin (LWO) and translation elongation factor 1α (EF‐1α) genes and from a region of the mitochondrial DNA containing the genes encoding the subunits six and eight of the F‐ATPase were used to infer relationships among 10 Fordina species, namely Smynthurodes betae, Aploneura lentisci, Baizongia pistaciae, two Geoica species (G. utricularia and G. setulosa), three species of Forda and two of Paracletus. Relationships between and within representatives of the genera Forda and Paracletus, both exemplifying taxonomic and ecological problems, were investigated in greater depth through extensive sampling and morphometric analysis. A total of eight, six and six samples from F. formicaria, F. marginata and F. riccobonii, respectively, were included in the survey, along with 40 and 4 samples classified initially as P. cimiciformis and P. donisthorpei, respectively. Our results are relevant to current studies on the evolution of host selection by aphids and on the evolution of gall morphology. Our phylogeny suggests that the group can be divided into two main clades. One clade is composed of aphids inducing small, low‐capacity galls on either P. atlantica or P. terebinthus (Smynthurodes betae and genera Forda and Paracletus). The second clade is composed of species inducing larger galls on P. lentiscus and P. terebinthus (Aploneura lentisci, Baizongia pistaciae and Geoica species). Our results suggest that revision of diagnostic characters used in the taxonomy of Paracletus is needed, and suggest Forda rotunda as a new synonym of Paracletus cimiciformis syn.n.  相似文献   

8.
Abstract.  1. The relative importance of direct and indirect interactions in controlling organism abundance is still an unresolved question. This study investigated the role of the direct and indirect interactions involving ants, aphids, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae) on a galling herbivore Baccharopelma dracunculifoliae (Homoptera: Psyllidae).
2. The effects of these interactions on the galling herbivore's performance were evaluated by an exclusion experiment during two consecutive generations of the galling insect.
3. Ants had a direct negative effect on the performance of the galling herbivore by reducing the number of nymphs per gall. In contrast, ants had no indirect effects on gall mortality through the associated parasitoids.
4. Aphids negatively affected gall development, suggesting that galls and aphids might be partitioning photoassimilates and nutrients moving throughout host-plant tissues.
5. In addition, galls that developed during the rainy season were heavier, indicating that variation in the host plant, due to weather changes, can affect the development of B. dracunculifoliae galls. However, variation in the development of B. dracunculifoliae galls due to presence of aphids or the weather changes did not affect parasitoid attack.
6. These results suggest that direct interactions between ants and galls influenced galling insect abundance, whereas numerical indirect effects involving galling insects, ants, aphids, and host plants were less conspicuous.  相似文献   

9.
Impact of a parasitoid on the bacterial symbiosis of its aphid host   总被引:2,自引:0,他引:2  
Embryo production in aphids is absolutely dependent on the function of symbiotic bacteria, mainly Buchnera, and the growth and development of koinobiont parasitoids in aphids requires the diversion of nutrients from aphid embryo production to the parasitoid. The implication that the bacterial symbiosis may be promoted in parasitized aphids to support the growing parasitoid was explored by analysis of the number and biomass of mycetocytes, and the aphid cells bearing Buchnera, in the pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) parasitized by the wasp Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids hosting a young larval parasitoid bore more mycetocytes of greater total biomass, and embryos of lower biomass than unparasitized aphids. Furthermore, one of the three aphid clones tested, which limited teratocyte growth (giant cells of parasitoid origin having a trophic role), bore smaller mycetocytes and larger embryos, than one or both of the two aphid clones with greater susceptibility to the parasitoid. These data suggest that susceptibility of the aphid‐Buchnera symbiosis to parasitoid‐mediated manipulation may, directly or indirectly, contribute to aphid susceptibility to parasitoid exploitation.  相似文献   

10.
The nutrition hypothesis for the adaptive significance of insect gall formation postulates that galls accumulate higher concentrations of nutritive compounds than uninfested plant tissue, resulting in a high performance of the gall former. This hypothesis has been supported by some taxa of gall insects, but not by taxa such as cynipid wasps. Aphid galls are expected to require higher levels of nitrogen than other insects’ galls with a single inhabitant, because aphid galls are required to sustain a number of aphids reproducing parthenogenetically over two generations. The present study tested this hypothesis by evaluating aphid performance and amino acid concentration in phloem sap, using the aphid Rhopalosiphum insertum (Walker) (Homoptera: Aphididae), which establishes colonies on leaves of Sorbus commixta Hedlund or in galls of the aphid Sorbaphis chaetosiphon Shaposhnikov (Homoptera: Aphididae). We prepared the gall and non‐gall treatments on trees of S. commixta, in which R. insertum fundatrices were reared and allowed to reproduce. In S. chaetosiphon galls, R. insertum colonies propagated more rapidly, and the second generation grew larger and more fecund than on ungalled leaves. The amount of amino acids exuding from cut galled leaves was fivefold that in ungalled leaves; however, there was no significant difference in the amino acid composition between galled and ungalled leaves. In the intact leaves, total amino acid concentration in the phloem sap declined rapidly from late April to late May; however, the galls retained this high amino acid concentration in developing leaves for 1 month. These results indicate that the improved performance in R. insertum is ascribed to the increased concentration of amino acids in galled leaves. We suggest that S. chaetosiphon galls function to promote the breakdown of leaf protein, leading to an increased performance of gall‐inhabiting aphids.  相似文献   

11.
Aphid saliva plays an essential role in the interaction between aphids and their host plants. Several aphid salivary proteins have been identified but none from galling aphids. Here the salivary proteins from the Chinese gall aphid are analyzed, Schlechtendalia chinensis, via an LC‐MS/MS analysis. A total of 31 proteins are identified directly from saliva collected via an artificial diet, and 141 proteins are identified from extracts derived from dissected salivary glands. Among these identified proteins, 17 are found in both collected saliva and dissected salivary glands. In comparison with salivary proteins from ten other free‐living Hemipterans, the most striking feature of the salivary protein from S. chinensis is the existence of high proportion of proteins with binding activity, including DNA‐, protein‐, ATP‐, and iron‐binding proteins. These proteins maybe involved in gall formation. These results provide a framework for future research to elucidate the molecular basis for gall induction by galling aphids.  相似文献   

12.
Although larvae of flea weevils (Curculioninae: Rhamphini) have been known to be leaf miners, larvae of the rhamphine weevil Orchestes hustachei have been found in aphid galls of four Tetraneura species on Ulmus davidiana and in galls of Paracolopha morissoni on Zelkova serrata. This study clarified the feeding habits of O. hustachei larvae and evaluated gall selection by ovipositing females to test the hypothesis of host race formation on their hosts, Tetraneura and Paracolopha galls. When weevil larvae were placed in half‐cut galls, they always fed on aphids rather than on gall tissue. When given gall tissue only, all larvae failed to reach adulthood. The number of aphids surviving in a parasitized gall decreased significantly with the development of the weevil larvae. These results suggest that O. hustachei larvae use aphids as their major food source. In the field, ovipositing females did not discern between four Tetraneura species on U. davidiana, in spite of a large difference in suitability as food. Paracolopha morrisoni was introduced into Hokkaido approximately 100 years ago, together with the host plant Z. serrata. It is probable that P. morrisoni has recently come to be used as a host by O. hustachei in Hokkaido. Host choice experiments using Tetraneura sp. O and P. morrisoni galls indicated that female weevils from Z. serrata preferred P. morrisoni to Tetraneura sp. O galls, while females from U. davidiana selected the two types of gall randomly. On Z. serrata, female weevils selected larger P. morrisoni galls, while on U. davidiana, females did not show a preference for gall size. These results suggest that a host shift to P. morrisoni galls may have led to an initial stage of host race formation between the weevil population using Tetraneura galls on U. davidiana, and that using P. morrisoni galls on Z. serrata.  相似文献   

13.
Summary Samples of shoots ofPistacia lentiscus carrying galls of the aphid,Aploneura lentisci, were collected at three localities in Israel. Shoots growing near pruning scars carried more galls than elsewhere on the plant, but these galls weighed less and contained fewer aphids (smaller clones). The proportion of empty galls increased with gall density. Crowding of galls at such sites may be due to the early burst of buds at the time of aphid emergence from the overwintering eggs, and not to active search for preferred sites. Shoots bearing larger numbers of leaves carried heavier galls, which contained larger aphid clones. The position of the galled leaf on the shoot had no effect on gall weight nor on clone size. The physiological condition of the plant may be an important environmental (ecological) factor affecting the variation in clone-size and in aphid morphology among galls.  相似文献   

14.
《Palaeoworld》2022,31(3):550-564
Indian Cenozoic deposits contain well-preserved diverse angiosperm leaf assemblages, but galling, a common form of angiosperm leaf damage in modern tropical forests, has not been well-documented. Here we report insect herbivory on diverse angiosperm fossil leaf specimens from Pliocene (Rajdanda Formation) sediments of the Chotanagpur Plateau, eastern India, revealing that galling was the most common form of folivory in the latest Neogene monsoon-adapted tropical forests of eastern India. Diverse well-preserved galls are described on the basis of their size, shape and position on the host angiosperm leaf remains. Nine gall damage types (DT 32, DT 33, DT 34, DT 80, DT 83, DT 85, DT 110, DT 120, and DT 144) are identified. They are compared with extant galls and the probable gall inducers making morphologically similar galls on related host tropical plant species of Ficus, Mangifera, Albizia, Galactia, Ziziphus, Hylodesmum, Adina, and Psidium. The gall producers belong to the insect orders Orthoptera, Hemiptera, Hymenoptera, Coleoptera, Lepidoptera, and Diptera (Cecidomyiidae). Although the detailed morphology of the phytophagous insects associated with the recovered fossil leaves is unknown, our findings indicate that many modern plant-insect relationships were likely established by the Pliocene. The reconstructed warm, humid Pliocene climate with a weak monsoon seasonality was conducive to extensive galling activity during this time.  相似文献   

15.
Aphids are intimately associated with their host plants. Evolutionary lability of host association is common within heteroecious aphid lineages, whereas our knowledge of host‐use evolution in non‐host‐alternating aphids is limited. In the present study, we construct the first detailed molecular phylogeny of the monoecious aphid tribe Greenideini based on three mitochondrial genes (COI, COII and Cytb) and one nuclear gene (EF), and investigated its history of host association. Maximum likelihood and Bayesian phylogenies strongly support the monophyly of Greenideini and most constituent genera. Divergence time estimates and character reconstructions suggest that Greenideini may have originated during the Late Cretaceous to early Paleogene, which accompanies the origin of its ancestral host, members of the family Fagaceae. Colonisation of novel host plants has occurred multiple times during the evolutionary history of Greenideini, thereby leading to current patterns of host association. We suggest that directly shifting to novel hosts, together with expanding host range onto pre‐existing, unused plants, has probably promoted diversification in this tribe.  相似文献   

16.
Two types of cecidomyiid leaf galls, cup‐shaped and umbrella‐shaped, occur on Litsea acuminata (Lauraceae) in Taiwan. Based on the concept of gall shapes as “extended phenotypes” of gall inducers, these two types could be induced by different gall midge species. However, galls with intermediate shapes between the two types were recently discovered, which implies that possible genetic exchanges occur between the gall inducers of both types. To clarify the taxonomic status of gall midges responsible for the two types of galls on L. acuminata, we undertook taxonomic, molecular phylogenetic and ecological studies. Our findings show that the two gall types are induced by the same Bruggmanniella species and the species is new to science. We describe the species forming this range of galls as Bruggmanniella litseae sp. n. , and compare their geographical distribution, galling position and morphometry. Based on our results, a possible evolutionary scenario of B. litseae sp. n. is discussed.  相似文献   

17.
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum‐likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host‐associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall‐forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host‐plant‐associated differentiation were greater in the non‐gall‐inducing parasites than in their gall‐inducing hosts. RNA‐seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host‐plant relationships. Our results suggest a mode of speciation in which host plants drive within‐guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.  相似文献   

18.
Galling insects modify the developmental pathways of their host plants and create a protected and favourable microhabitat for their offspring. Galling aphids reproduce in their galls and the resulting clones often comprise hundreds of individuals. We followed the histological changes in the host Pistacia palaestina (Anacardiaceae) induced by the galling aphid Geoica wertheimae (Aphidoidea, Pemphigidae: Fordinae). We showed that the leaf tissues are altered in the gall in a way that gives the aphids easy access to the vascular system from which they obtain their nourishment. Specifically, the cuticle that lines the normal leaf epidermal cells is absent on the surface of the inner gall cavity, and the normal palisade cells are replaced by parenchymatous tissue with numerous wide latex ducts. Associated with these ducts, many new sieve tubes (phloem elements) are formed just a few cell layers below the inner gall surface. This arrangement enables the hundreds of aphids to feed simultaneously and continuously in the gall throughout the summer.  相似文献   

19.
Gall-site selection by the aphid Kaltenbachiella japonica was evaluated in relation to leaf position in a shoot, and gall positions within a leaf. First-instar fundatrices induce closed galls on the midribs of host leaves, and several galls were often induced on one leaf. Leaves with many galls were often withered before emergence of sexuparae from the galls. Within a leaf, gall volume was positively correlated with the sum of lateral-vein length in the leaf segment at which the gall was induced. The observed pattern in gall volume among the leaf segments corresponded with that in the lateral-vein length. These results show that a foundatrix selects the most vigorous position within a leaf to produce more offspring. Although distal leaves grew faster than did basal leaves, gall density was highest on leaves at the middle order when a shoot has more than seven leaves. Optimal gall-site selection seems to be constrained by the asynchrony in timing between the hatching of fundatrices and leaf growth within a shoot. These results suggest that the observed gall distribution is affected by both the distribution of suitable galling sites within a leaf and the synchrony with leaf phenology of the host plant.  相似文献   

20.
Some aphid species induce leaf galls, in which the fundatrix parthenogenetically produces many nymphs. In order to ensure high performance, galls have to provide the aphids with sufficient nutrients, in particular, amino acids as a nitrogen source. We tested this hypothesis using six Tetraneura aphid species that induce closed galls. We extracted free amino acids from the whole gall tissues of unit weight and quantified the concentration of each amino acid. There were large differences in the total amino acid concentrations among galls of the Tetraneura species. Tetraneura species in which higher concentrations of total amino acids were found in the gall tended to produce larger numbers of offspring. Of the amino acids found, asparagine was predominant in the gall. The asparagine concentration in T. yezoensis galls was several hundred times as high as in control leaves. We discussed why such a high level of asparagine accumulates in aphid galls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号