首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37) catalyses the dephosphorylation of sedoheptulose-1,7-bisphosphate in the regenerative phase of the Calvin cycle. Antisense plants with reduced levels of SBPase have decreased photosynthetic capacity and altered carbohydrate status, leading to modifications in growth and development. The catalytic activity of SBPase is regulated by light via the ferredoxin/thioredoxin system. Recently, the amino acids within the SBPase protein involved in this regulatory mechanism have been identified and a deregulated, permanently active form of the enzyme has been produced using site-directed mutagenesis. This paper explores how transgenic Nicotiana tabacum cv. Samsun plants, containing the deregulated form of the SBPase enzyme, may lead to a better understanding of the in vivo role of light activation of this important Calvin cycle enzyme.  相似文献   

2.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

3.
Transgenic tobacco (Nicotiana tabacum L. cv. Samsun) plants with reduced levels of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase; EC 3.1.3.37) were produced using an antisense construct in which the expression of a tobacco SBPase cDNA clone was driven by the cauliflower mosaic virus (CaMV) promoter. The reduction in SBPase protein levels observed in the primary transformants correlated with the presence of the antisense construct and lower levels of the endogenous SBPase mRNA. No changes in the amounts of other Calvin cycle enzymes were detected using Western blot analysis. The SBPase antisense plants with less than 20% of wild-type SBPase activity were observed to display a range of phenotypes, including chlorosis and reduced growth rates. Measurements of photosynthesis, using both light-dosage response and CO2 response curves, of T1 plants revealed a reduction in carbon assimilation rates, which was apparent in plants retaining 57% of wild-type SBPase activity. Reductions were also observed in the quantum efficiency of photosystem II. This decrease in photosynthetic capacity was reflected in a reduction in the carbohydrate content of leaves. Analysis of carbohydrate status in fully expanded source leaves showed a shift in carbon allocation away from starch, whilst sucrose levels were maintained in all but the most severely affected plants. Plants with less than 15% of wild-type SBPase activity were found to contain less than 5% of wild-type starch levels. The results of this preliminary analysis indicate that SBPase activity may limit the rate of carbon assimilation. Received: 23 February 1997 / Accepted: 2 May 1997  相似文献   

4.
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of an Arabidopsis (Arabidopsis thaliana) cDNA in tobacco (Nicotiana tabacum) plants. In plants with increased SBPase activity, photosynthetic rates were increased, higher levels of Suc and starch accumulated during the photoperiod, and an increase in leaf area and biomass of up to 30% was also evident. Light saturated photosynthesis increased with increasing SBPase activity and analysis of CO2 response curves revealed that this increase in photosynthesis could be attributed to an increase in ribulose 1,5-bisphosphate regenerative capacity. Seedlings with increased SBPase activity had an increased leaf area at the 4 to 5 leaf stage when compared to wild-type plants, and chlorophyll fluorescence imaging of these young plants revealed a higher photosynthetic capacity at the whole plant level. Measurements of photosynthesis, made under growth conditions integrated over the day, showed that mature plants with increased SBPase activity fixed 6% to 12% more carbon than equivalent wild-type leaves, with the young leaves having the highest rates. In this paper, we have shown that photosynthetic capacity per unit area and plant yield can be increased by overexpressing a single native plant enzyme, SBPase, and that this gives an advantage to the growth of these plants from an early phase of vegetative growth. This work has also shown that it is not necessary to bypass the normal regulatory control of SBPase, exerted by conditions in the stroma, to achieve improvements in carbon fixation.  相似文献   

5.
We present observations of photosynthetic carbon dioxide assimilation, and leaf starch content from genetically modified tobacco (Nicotiana tabacum) plants in which the activity of the Calvin cycle enzyme, sedoheptulose-1,7-bisphosphatase, is reduced by an antisense construct. The measurements were made on leaves of varying ages and used to calculate the flux control coefficients of sedoheptulose-1,7-bisphosphatase over photosynthetic assimilation and starch synthesis. These calculations suggest that control coefficients for both are negative in young leaves, and positive in mature leaves. This behaviour is compared to control coefficients obtained from a detailed computer model of the Calvin cycle. The comparison demonstrates that the experimental observations are consistent with bistable behaviour exhibited by the model, and provides the first experimental evidence that such behaviour in the Calvin cycle occurs in vivo as well as in silico.  相似文献   

6.
Several proteins are recalcitrant to expression in Escherichiacoli. To explore transgenic plants as an alternative expressionsystem, the gene encoding the potential herbicide target sedoheptulose-1,7-bisphosphatase (SBPase, EC 3.1.3.37) was expressed in transgenic tobacco(Nicotiana tabaccum) under the control of a duplicatedCaMV 35S RNA promoter. The active protein, a key enzyme in the Calvin cycle,accumulated to approximately 1.2% of total soluble protein. In order to purifyrecombinant SBPase, a sequence encoding six histidine residues was insertedC-terminally which allows a one step purification via Ni2+-NTAaffinity chromatography. N-terminal amino acid sequence analysis of the purifiedprotein confirmed processing of the transit peptide and revealed the previouslyunknown cleavage site. The transit peptide consists of 67 amino acids followedby the mature SBPase subunit of 342 amino acids including the C-terminalfusion. Purified SBPase was found to be enzymatically active after reduction with DTTand showed many biochemical properties of the native enzyme such as thedependence on Mg2+ and a pH optimum of 8.3. Subsequently, SBPaseproduced in transgenic tobacco was used in large-scale screening for thediscovery of novel herbicides.  相似文献   

7.
The regulation of photosynthetic yield at the genetic level has largely focused on manipulation of the catalytic enzymes in the Calvin cycle by genetic engineering. In order to investigate the contribution of increased enzymatic activity in the Calvin cycle on photosynthetic yield, the rice fructose-1,6-bisphosphate aldolase (FBA), spinach triosephosphate isomerase (TPI) and wheat fructose-1,6-bisphosphatase (FBPase) genes were cloned in tandem and co-overexpressed in cyanobacterium Anabaena sp. strain PCC 7120 cells. The enzymatic activities of FBA, TPI and FBPase, as well as sedoheptulose-1,7-bisphosphatase (SBPase), were remarkably increased in transgenic cells relative to the wild-type. The photosynthetic yield, as reflected by photosynthetic O2 evolution and dry cellular weight, was also markedly increased in transgenic cells versus wide-type cells. The activity of SBPase is considered the most important factor for ribulose-1,5-bisphosphate (RuBP) regeneration in the Calvin cycle, and increased activity of TPI alone in transgenic cells does not stimulate photosynthetic yield. Thus, the increased activity of FBA and FBPase, but not TPI, significantly improved photosynthetic yield in transgenic cells by stimulating SBPase activity and consequently accelerating the RuBP regeneration rate.  相似文献   

8.
Liu XL  Yu HD  Guan Y  Li JK  Guo FQ 《Molecular plant》2012,5(5):1082-1099
Sedoheptulose-1,7-bisphosphatase (SBPase) is a Calvin cycle enzyme and functions in photosynthetic carbon fixation. We found that SBPase was rapidly carbonylated in response to methyl viologen (MV) treatments in detached leaves of Arabidopsis plants. In vitro activity analysis of the purified recombinant SBPase showed that SBPase was carbonylated by hydroxyl radicals, which led to enzyme inactivation in an H(2)O(2) dose-dependent manner. To determine the conformity with carbonylation-caused loss in enzymatic activity in response to stresses, we isolated a loss-of-function mutant sbp, which is deficient in SBPase-dependent carbon assimilation and starch biosynthesis. sbp mutant exhibited a severe growth retardation phenotype, especially for the developmental defects in leaves and flowers where SBPASE is highly expressed. The mutation of SBPASE caused growth retardation mainly through inhibition of cell division and expansion, which can be partially rescued by exogenous application of sucrose. Our findings demonstrate that ROS-induced oxidative damage to SBPase affects growth, development, and chloroplast biogenesis in Arabidopsis through inhibiting carbon assimilation efficiency. The data presented here provide a case study that such inactivation of SBPase caused by carbonyl modification may be a kind of adaptation for plants to restrict the operation of the reductive pentose phosphate pathway under stress conditions.  相似文献   

9.

Background

In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario.

Results

Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations.

Conclusions

There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition ??from specialist to generalist??. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.  相似文献   

10.
To clarify the contributions of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) separately to the carbon flux in the Calvin cycle, we generated transgenic tobacco plants expressing cyanobacterial FBPase-II in chloroplasts (TpF) or Chlamydomonas SBPase in chloroplasts (TpS). In TpF-11 plants with 2.3-fold higher FBPase activity and in TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity in chloroplasts compared with the wild-type plants, the amount of final dry matter was approximately 1.3-, 1.5- and 1.5-fold higher, respectively, than that of the wild-type plants. At 1,500 micromol m(-2) s(-1), the photosynthetic activities of TpF-11, TpS-11 and TpS-10 were 1.15-, 1.27- and 1.23-fold higher, respectively, than that of the wild-type plants. The in vivo activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the level of ribulose-1,5-bisphosphate (RuBP) in TpF-11, TpS-10 and TpS-11 were significantly higher than those in the wild-type plants. However, the transgenic plant TpF-9 which had a 1.7-fold higher level of FBPase activity showed the same phenotype as the wild-type plant, except for the increase of starch content in the source leaves. TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity, respectively, showed an increase in the photosynthetic CO(2) fixation, growth rate, RuBP contents and Rubisco activation state, while TpS-2 plants with 1.3-fold higher SBPase showed the same phenotype as the wild-type plants. These data indicated that the enhancement of either a >1.7-fold increase of FBPase or a 1.3-fold increase of SBPase in the chloroplasts had a marked positive effect on photosynthesis, that SBPase is the most important factor for the RuBP regeneration in the Calvin cycle and that FBPase contributes to the partitioning of the fixed carbon for RuBP regeneration or starch synthesis.  相似文献   

11.
Sedoheptulose-1,7-bisphosphatase (SBPase) is a Calvin Cycle enzyme exclusive to chloroplasts and is involved in photosynthetic carbon fixation. The two cysteine residues involved in its redox regulation have been identified by site-directed mutagenesis. They are four residues apart in a predicted loop between two alpha helices and probably form a disulphide bond when oxidised. Three-dimensional modelling of SBPase has been performed using crystallographic data from the structurally homologous pig fructose-1,6-bisphosphatase (FBPase). The results suggest that formation of the disulphide bridge in SBPase is directly analogous to the allosteric regulation of pig FBPase by AMP in terms of the resulting structural changes. Similar changes are thought to occur in chloroplast FBPase, which like SBPase, is also redox regulated and involved in carbon fixation. From the results presented here it appears that the same basic mechanism for the allosteric regulation of enzymic activity operates in the FBPases and SBPase but that the sites at which the regulatory ligands (AMP or thioredoxin) exert their effects are different in each  相似文献   

12.
In this paper we study activation by dithiothreitol and reduced thioredoxins and deactivation by oxidized thioredoxins f of sedoheptulose-1,7-bisphosphatase. The behaviour of the enzyme when chromatographed on a thioredoxin-Sepharose column is also described. The enzyme is autoxidizable upon removal of reducing agents, and is activated when reduced by any of the thioredoxins. This mechanism may allow the regulation of the Calvin cycle upon light-dark and dark-light transitions. The formation of a stable complex between enzyme and thioredoxin could explain the inhibitory effect of high thioredoxin concentrations. The use of immunological techniques shows that sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase are poorly related immunologically.  相似文献   

13.
Feng L  Wang K  Li Y  Tan Y  Kong J  Li H  Li Y  Zhu Y 《Plant cell reports》2007,26(9):1635-1646
Activity of the Calvin cycle enzyme sedoheptulose-1,7-bisphosphatase (SBPase) was increased by overexpression of a rice plants 9,311 (Oryza sativa L.) cDNA in rice plants zhonghua11 (Oryza sativa L.). The genetic engineering enabled the plants to accumulate SBPase in chloroplasts and resulted in enhanced tolerance to high temperature stress during growth of young seedlings. Moreover, CO2 assimilation of transgenic plants was significantly more tolerant to high temperature than that of wild-type plants. The analyses of chlorophyll fluorescence and the content and activation of SBPase indicated that the enhancement of photosynthesis to high temperature was not related to the function of photosystem II but to the content and activation of SBPase. Western blotting analyses showed that high temperature stress led to the association of SBPase with the thylakoid membranes from the stroma fractions. However, such an association was much more pronounced in wild-type plants than that in transgenic plants. The results in this study suggested that under high temperature stress, SBPase maintained the activation of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) by preventing the sequestration of Rubisco activase to the thylakoid membranes from the soluble stroma fraction and thus enhanced the tolerance of CO2 assimilation to high temperature stress. The results suggested that overexpression of SBPase might be an effective method for enhancing high temperature tolerance of plants.  相似文献   

14.
Class I and class II aldolases are products of two evolutionary non-related gene families. The cytosol and chloroplast enzymes of higher plants are of the class I type, the latter being bifunctional for fructose-1,6- and sedoheptulose-1,7-P2 in the Calvin cycle. Recently, class II aldolases were detected for the cytosol and chloroplasts of the lower alga Cyanophora paradoxa. The respective chloroplast enzyme has been shown here to be also bifunctional for fructose-1,6- and sedoheptulose-1,7-P2. Kinetics, also including fructose-1-P, were determined for all these enzymes. Apparently, aldolases are multifunctional enzymes, irrespective of their class I or class II type.  相似文献   

15.
The Calvin cycle revisited   总被引:14,自引:0,他引:14  
The sequence of reactions in the Calvin cycle, and the biochemical characteristics of the enzymes involved, have been known for some time. However, the extent to which any individual enzyme controls the rate of carbon fixation has been a long standing question. Over the last 10 years, antisense transgenic plants have been used as tools to address this and have revealed some unexpected findings about the Calvin cycle. It was shown that under a range of environmental conditions, the level of Rubisco protein had little impact on the control of carbon fixation. In addition, three of the four thioredoxin regulated enzymes, FBPase, PRKase and GAPDH, had negligible control of the cycle. Unexpectedly, non-regulated enzymes catalysing reversible reactions, aldolase and transketolase, both exerted significant control over carbon flux. Furthermore, under a range of growth conditions SBPase was shown to have a significant level of control over the Calvin cycle. These data led to the hypothesis that increasing the amounts of these enzymes may lead to an increase in photosynthetic carbon assimilation. Remarkably, photosynthetic capacity and growth were increased in tobacco plants expressing a bifunctional SBPase/FBPase enzyme. Future work is discussed which will further our understanding of this complex and important pathway, particularly in relation to the mechanisms that regulate and co-ordinate enzyme activity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

16.
17.
We briefly review the metabolism of the chloroplast stroma, and describe the structural modelling technique of elementary modes analysis. The technique is applied to a model of chloroplast metabolism to investigate viable pathways in the light, in the dark, and in the dark with the addition of sedoheptulose-1,7-bisphosphatase (normally inactive in the dark). The results of the analysis show that it is possible for starch degradation to enhance photosynthetic triose phosphate export in the light, but the reactions of the Calvin cycle alone are not capable of providing a sustainable flux from starch to triose phosphate in the dark. When reactions of the oxidative pentose phosphate pathway are taken into consideration, triose phosphate export in the dark becomes possible by the operation of a cyclic pathway not previously described. The effect of introducing sedoheptulose-1,7-bisphosphatase to the system are relatively minor and, we predict, innocuous in vivo. We conclude that, in contrast with the traditional view of the Calvin cycle and oxidative pentose phosphate pathway as separate systems, they are in fact, in the context of the chloroplast, complementary and overlapping components of the same system.  相似文献   

18.
Transgenic tobacco plants expressing a cyanobacterial fructose-1,6/sedoheptulose-1,7-bisphosphatase targeted to chloroplasts show enhanced photosynthetic efficiency and growth characteristics under atmospheric conditions (360 p.p.m. CO2). Compared with wild-type tobacco, final dry matter and photosynthetic CO2 fixation of the transgenic plants were 1.5-fold and 1.24-fold higher, respectively. Transgenic tobacco also showed a 1.2-fold increase in initial activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) compared with wild-type plants. Levels of intermediates in the Calvin cycle and the accumulation of carbohydrates were also higher than those in wild-type plants. This is the first report in which expression of a single plastid-targeted enzyme has been shown to improve carbon fixation and growth in transgenic plants.  相似文献   

19.
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.Abbreviations FBP fructose-1,6-bisphosphatase - SBP sedoheptulose-1,7-bisphosphatase - FBA fructose-1,6-bisphosphate aldolase  相似文献   

20.
Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F(q)(')/F(m)(')) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO(2) assimilation rates and higher internal CO(2) concentrations. Increasing CO(2) concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C(i) levels. Together, these data suggest that the primary light-induced opening or CO(2)-dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号