首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The post-translational modification of proteins by covalent attachment of ubiquitin occurs in all eukaryotes by a multi-step process. A family of E2 or ubiquitin conjugating (UBC) enzymes catalyse one step of this process and these have been implicated in several diverse regulatory functions. We report here the sequence of a gene encoded by African swine fever virus (ASFV) which has high homology with UBC enzymes. This ASFV encoded enzyme has UBC activity when expressed in Escherichia coli since it forms thiolester bonds with [125I]ubiquitin in the presence of purified ubiquitin activating enzyme (E1) and ATP, and subsequently transfers [125I]ubiquitin to specific protein substrates. These substrates include histones, ubiquitin and the UBC enzyme itself. The ASFV encoded UBC enzyme is similar in structure and enzyme activity to the yeast ubiquitin conjugating enzymes UBC2 and UBC3. This is the first report of a virus encoding a functionally active UBC enzyme and provides an example of the exploitation of host regulatory mechanisms by viruses.  相似文献   

2.
Newcastle disease virus (Herts strain), grown in embryonated eggs or in a line of bovine kidney cells, was purified and then separated by sucrose density gradient centrifugation into infectious (IH) and noninfectious hemagglutinating (NIH) particles. These particles were morphologically similar, although the average size of IH was twice that of NIH particles. The activity of hemagglutinin per milligram of virus protein was two- to threefold higher in NIH particles than in IH particles, whereas the specific activity of neuraminidase did not differ in the two particle types. This was consistent with the observed particle size difference. The distribution of the major proteins in IH and NIH particles from egg-grown virus, determined by polyacrylamide gel electrophoresis (PAGE), was significantly different. In IH particles the molar ratio of protein 1 (74,000 daltons) to proteins 2 and 3 (56,000 daltons): protein 6 (41,000 daltons) was 1.0:2.5:2.5; in NIH particles the ratio was 1.0:0.6:1.0. When Newcastle disease virus was grown in bovine kidney cells, the molar ratio of proteins in IH particles resembled that of of egg-grown virus. However, in NIH particles from bovine kidney cells, only protein bands corresponding to protein 1 and proteins 2-3 were present and their molar ratio was 1.0:0.6. Protein 6 was marginally detectable in these particles. Analysis of the proteins in [3H]isoleucine- and [14C]glucosamine-labeled virus showed proteins 1 and 2 (glycoproteins) present in the ratio of 1.0:0.5; protein 3, the nucleoprotein, was not detected. These results are compatible with previous findings by others that NIH particles are deficient in RNA and nucleoprotein antigen, and suggest that formation of discrete particles of Newcastle disease virus by budding requires at most minimal amounts of proteins 3 or 6. The fatty acid composition of egg-grown IH and NIH particles was not significantly different and resembled that of normal allantoic fluid.  相似文献   

3.
The latent membrane protein 1 (LMP1) of the Epstein-Barr virus is a constitutively active receptor essential for B lymphocyte transformation by the Epstein-Barr virus. It is a short-lived protein, but the proteolytic pathway involved in its degradation is not known. The ubiquitin pathway is a major system for specific protein degradation in eukaryotes. Most plasma membrane substrates of the pathway are internalized upon ubiquitination and delivered for degradation in the lysosome/vacuole. Here we show that LMP1 is a substrate of the ubiquitin pathway and is ubiquitinated both in vitro and in vivo. However, in contrast to other plasma membrane substrates of the ubiquitin system, it is degraded mostly by the proteasome and not by lysosomes. Degradation is independent of the single Lys residue of the protein; a lysine-less mutant LMP1 is degraded in a ubiquitin- and proteasome-dependent manner similar to the wild type protein. Degradation of both wild type and lysine-less protein is sensitive to fusion of a Myc tag to the N terminus of LMP1. In addition, deletion of as few as 12 N-terminal amino acid residues stabilizes the protein. These findings suggest that the first event in LMP1 degradation is attachment of ubiquitin to the N-terminal residue of the protein. We present evidence suggesting that phosphorylation is also required for degradation of LMP1.  相似文献   

4.
Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 [VP3]; 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. Cleavage of VP3 does not alter viral binding to cell monolayers. In previous electron microscopic studies of infected cell cultures, it has been demonstrated that rotavirus particles enter cells by both endocytosis and direct cell membrane penetration. To determine whether trypsin treatment affected rotavirus internalization, we studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Endocytosis inhibitors (sodium azide, dinitrophenol) and lysosomotropic agents (ammonium chloride, chloroquine) had a limited effect on the entry of infectious virus into cells. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 medicated 51Cr, [14C]choline, and [3H]inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.  相似文献   

5.
[目的]观察比较鼠脑复壮前后狂犬病毒的形态变化,并观察病毒感染BHK-21细胞后不同时间的形态发生情况.[方法]以保存时间较长的SRV9毒株为原始材料,经乳鼠脑传代复壮后接种BHK-21细胞,浓缩、纯化后观察.[结果](1)未经复壮的病毒中DI粒子占较高比例,典型粒子只占少数,而复壮后典型粒子所占比例升高到病毒粒子总数的90%.(2)感染24h后在细胞浆内可以观察到典型病毒粒子,其数量随着培养时间的延长而增加.带毒传代之后的培养过程中细胞内病毒数量增加不明显.(3)病毒可以在细胞内的空泡膜表面以多种方式成堆出芽.[结论](1)鼠脑复壮可恢复狂犬病毒中典型粒子所占比例.(2)带毒传代1~2次时为狂犬病毒收获的最佳时机.(3)本研究为狂犬病毒的装配机制补充了数据.  相似文献   

6.
7.
The interaction between influenza virus and target membrane lipids during membrane fusion was studied with hydrophobic photoactivatable probes. Two probes, the newly synthesized bisphospholipid diphosphatidylethanolamine trifluoromethyl [3H]phenyl diazirine and the phospholipid analogue 1-palmitoyl-2(11-[4-[3-(trifluoromethyl)diazirinyl]phenyl]-[2-3H]- undecanoyl]-sn-glycero-3-phosphocholine (Harter, C., B?chi, T., Semenza, G., and Brunner , J. (1988) Biochemistry 27, 1856-1864), were used. Both labeled the HA2 subunit of the virus at low pH. By measuring virus-liposome interactions at 0 degrees C, it could be demonstrated that HA2 was inserted into the target membrane prior to fusion. As we have recently demonstrated, at this temperature, exposure of the fusion peptide of HA2 takes place within 15 s after acidification, but fusion does not start for 4 min (Stegmann, T., White, J. M., and Helenius, A. (1990) EMBO J. 9, 4231-4241). HA2 was labeled at least 2 min before fusion. No labeling of the HA1 subunit was seen. These data indicate that fusion is triggered by a direct interaction of the HA2 subunit of a kinetic intermediate form of HA with the lipids of the target membrane. Most likely, it is the fusion peptide of HA2 that is inserted into the target membrane. Just before fusion, HA is thus an integral membrane protein in both membranes. In contrast, the bromelain-derived ectodomain of HA was labeled by 1-palmitoyl-2(11-[4-[3-(trifluoromethyl)diazirinyl]phenyl]- [2-3H]undecanoyl)-sn-glycerol-3-phosphocholine at low pH but not by diphosphatidylethanolamine trifluoromethyl [3H]phenyl diazirine. This indicates that insertion of the fusion peptide of the bromelain-derived ectodomain of HA into a membrane differs from that of viral HA during fusion.  相似文献   

8.
Cerulenin, an antibiotic that inhibits de novo fatty acid and cholesterol biosynthesis, effectively inhibited the formation and release of virus particles from chicken embryo fibroblasts infected with Sindbis or vesicular stomatitis virus (VSV). When added for 1 h at 3 h postinfection, the antibiotic blocked VSV particle production by 80 to 90% and inhibited incorporation of [3H]palmitic acid into the VSV glycoprotein by an equivalent amount. The effect of this antibiotic on virus protein and RNA biosynthesis was significantly less than that on fatty acid acylation. Nonacylated virus glycoproteins accumulated inside and on the surface of cerulenin-treated cells. These data indicate that fatty acid acylation is not essential for intracellular transport of these membrane proteins, but it may have an important role in the interaction of glycoproteins with membranes during virus assembly and budding.  相似文献   

9.
We have constructed a recombinant herpes simplex virus type 1 (HSV-1) that simultaneously encodes selected structural proteins from all three virion compartments-capsid, tegument, and envelope-fused with autofluorescent proteins. This triple-fluorescent recombinant, rHSV-RYC, was replication competent, albeit with delayed kinetics, incorporated the fusion proteins into all three virion compartments, and was comparable to wild-type HSV-1 at the ultrastructural level. The VP26 capsid fusion protein (monomeric red fluorescent protein [mRFP]-VP26) was first observed throughout the nucleus and later accumulated in viral replication compartments. In the course of infection, mRFP-VP26 formed small foci in the periphery of the replication compartments that expanded and coalesced over time into much larger foci. The envelope glycoprotein H (gH) fusion protein (enhanced yellow fluorescent protein [EYFP]-gH) was first observed accumulating in a vesicular pattern in the cytoplasm and was then incorporated primarily into the nuclear membrane. The VP16 tegument fusion protein (VP16-enhanced cyan fluorescent protein [ECFP]) was first observed in a diffuse nuclear pattern and then accumulated in viral replication compartments. In addition, it also formed small foci in the periphery of the replication compartments which, however, did not colocalize with the small mRFP-VP26 foci. Later, VP16-ECFP was redistributed out of the nucleus into the cytoplasm, where it accumulated in vesicular foci and in perinuclear clusters reminiscent of the Golgi apparatus. Late in infection, mRFP-VP26, EYFP-gH, and VP16-ECFP were found colocalizing in dots at the plasma membrane, possibly representing mature progeny virus. In summary, this study provides new insights into the dynamics of compartmentalization and interaction among capsid, tegument, and envelope proteins. Similar strategies can also be applied to assess other dynamic events in the virus life cycle, such as entry and trafficking.  相似文献   

10.
The release of retroviruses from the plasma membrane requires host factors that are believed to be recruited to the site of budding by the late (L) domain of the virus-encoded Gag protein. The L domain of Rous sarcoma virus (RSV) has been shown to interact with a ubiquitin (Ub) ligase, and budding of this virus is dependent on Ub. RSV is similar to other retroviruses in that it contains approximately 100 molecules of Ub, but it is unique in that none of these molecules has been found to be conjugated to Gag. If transient ubiquitination of RSV Gag is required for budding, then replacement of the target lysine(s) with arginine should prevent the addition of Ub and reduce budding. Based on known sites of ubiquitination in other viruses, the important lysines would likely reside near the L domain. In RSV, there are five lysines located just upstream of the L domain in a region of the matrix (MA) protein that is dispensable for membrane binding, and replacement of these with arginine (mutant 1-5KR) reduced budding 80 to 90%. The block to budding was found to be on the plasma membrane; however, the few virions that were released had normal size, morphology, and infectivity. Budding was restored when any one of the residues was changed back to lysine or when lysines were inserted in novel positions, either within this region of MA or within the downstream p10 sequence. Moreover, the 1-5KR mutant could be rescued into particles by coexpression of budding-competent Gag molecules. These data argue that the phenotype of mutant 1-5KR is not due to a conformational defect. Consistent with the idea that efficient budding requires a specific role for lysines, human T-cell leukemia virus type 1, which does not bud well compared to RSV and lacks lysines close to its L domain, was found to be released at a higher level upon introduction of lysines near its L domain. This report strongly supports the hypothesis that ubiquitination of the RSV Gag protein (and perhaps those of other retroviruses) is needed for efficient budding.  相似文献   

11.
Dipyridamole in concentration of 25 microM inhibited the multiplication of vaccinia virus in about 90% of cells. In the presence of this substance, [3H]-uptake was sharply reduced both in uninfected and infected RK13 cells, while [14C]-uptake was not inhibited incorporation of [3H]-thymidine and [14C]-amino acids into viral particles. The present findings suggest that the antiviral character of dipyridamole is related with the inhibition of the substrate transport through the cell membrane.  相似文献   

12.
A novel method has been developed to study the functional roles of individual vaccinia virus gene products that is neither limited by the possible essentiality of the target gene nor by the availability of conditional lethal mutants. The system utilises the E. coli lac repressor protein, the operator sequence to which it binds and the specific inducer IPTG. It allows the generation of recombinant viruses in which the expression of any chosen gene, and hence virus replication, can be externally controlled. In principle, this system is broadly applicable to the functional analysis of genes in any large DNA virus. This approach has demonstrated that the gene encoding the 14 kDa membrane protein of vaccinia virus is non-essential for the production of infectious intracellular virus particles, but essential for the envelopment of intracellular virions by Golgi membrane and for egress of mature extracellular viral particles. This is the first vaccinia virus protein shown to be specifically required for these processes. In vivo this system may prove useful as a means of attenuating recombinant vaccinia virus vaccines by preventing virus spread without reducing the amount of the foreign antigen expressed in each infected cell. Attenuation of other live virus vaccines may be developed in a similar way.  相似文献   

13.
The protein Bc059385, whose solution structure is reported here, is the human representative of a recently identified family of membrane-anchored ubiquitin-fold (MUB) proteins. Analysis of their similarity to ubiquitin indicates that homologous amino acid residues in MUBs form a hydrophobic surface very similar to the recognition patch surrounding Ile-44 in ubiquitin. This suggests that MUBs may interact with proteins containing an alpha-helical motif similar to those of some ubiquitin binding domains. A disordered loop common to MUBs may also provide a second protein interaction site. From the available data, it is probable that this protein is prenylated and associated with the membrane. With <20% identity to ubiquitin, the MUB family further expands the sequence space that maps to the beta-grasp fold, and adds membrane localization to its list of functional roles.  相似文献   

14.
The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.  相似文献   

15.
We have created two sets of substitution mutations in the Moloney murine leukemia virus (Mo-MuLV) matrix protein in order to identify domains involved in association with the plasma membrane and in incorporation of the viral envelope glycoproteins into virus particles. The first set of mutations was targeted at putative membrane-associating regions similar to those of the human immunodeficiency virus type 1 matrix protein, which include a polybasic region at the N terminus of the Mo-MuLV matrix protein and two regions predicted to form beta strands. The second set of mutations was created within hydrophobic residues to test for the production of virus particles lacking envelope proteins, with the speculation of an involvement of the membrane-spanning region of the envelope protein in incorporation into virus particles. We have found that mutation of the N-terminal polybasic region redirected virus assembly to the cytoplasm, and we show that tryptophan residues may also play a significant role in the intracellular transport of the matrix protein. In total, 21 mutants of the Mo-MuLV matrix protein were produced, but we did not observe any mutant virus particles lacking the envelope glycoproteins, suggesting that a direct interaction between the Mo-MuLV matrix protein and envelope proteins either may not exist or may occur through multiple redundant interactions.  相似文献   

16.
Primary envelopment of several herpesviruses has been shown to occur by budding of intranuclear capsids through the inner nuclear membrane. By subsequent fusion of the primary envelope with the outer nuclear membrane, capsids are released into the cytoplasm and gain their final envelope by budding into vesicles in the trans-Golgi area. We show here that the product of the UL34 gene of pseudorabies virus, an alphaherpesvirus of swine, is localized in transfected and infected cells in the nuclear membrane. It is also detected in the envelope of virions in the perinuclear space but is undetectable in intracytoplasmic and extracellular enveloped virus particles. Conversely, the tegument protein UL49 is present in mature virus particles and absent from perinuclear virions. In the absence of the UL34 protein, acquisition of the primary envelope is blocked and neither virus particles in the perinuclear space nor intracytoplasmic capsids or virions are observed. However, light particles which label with the anti-UL49 serum are formed in the cytoplasm. We conclude that the UL34 protein is required for primary envelopment, that the primary envelope is biochemically different from the final envelope in that it contains the UL34 protein, and that perinuclear virions lack the tegument protein UL49, which is present in mature virions. Thus, we provide additional evidence for a two-step envelopment process in herpesviruses.  相似文献   

17.
In a previous paper (A. Verkleij, L. van Alphen, J. Bijvelt, and B. Lugtenberg, Biochim. Biophys. Acta 466:269-282, 1977) we have hypothesized that particles on the outer fracture face of the outer membrane ([Formula: see text]), with corresponding pits on the inner fracture face of the outer membrane ([Formula: see text]), consist of lipopolysaccharide (LPS) aggregates stabilized by divalent cations and that they might contain protein and/or phospholipid. In the present paper the roles of LPS, cations, and proteins in these [Formula: see text] particles are described more extensively, using a strain that lacks the major outer membrane proteins, b, c, and d (b(-) c(-) d(-)), and has a reduction in the number of [Formula: see text] particles of 75%. To study the role of divalent cations in the formation of [Formula: see text] particles, these b(-) c(-) d(-) cells were grown or incubated with Ca(2+), Mg(2+), or putrescine. The presence of Ca(2+) resulted in the appearance of many [Formula: see text] particles and [Formula: see text] pits. Mg(2+) and putrescine were less effective than Ca(2+). Introduction of these particles was not accompanied by alterations in the relative amounts of LPS and cell envelope proteins. Ca(2+) treatment of a heptoseless derivative of a b(-) c(-) d(-) strain did not result in morphological changes. Incubation of Ca(2+)-treated cells with ethylenediaminetetraacetate caused the disappearance of the introduced particles as well as the release of more than 60% of the cellular LPS. These results strongly support the hypothesis that LPS is involved in the formation of [Formula: see text] particles and [Formula: see text] pits. The roles of various outer membrane proteins in the formation of [Formula: see text] particles were studied by comparing the freeze-fracture morphology of b(-) c(-) d(-) cells with that of cells which contain one of the outer membrane proteins b, c, d, and e or the receptor protein for bacteriophage lambda. The results showed that the presence of any of these five proteins in a b(-) c(-) d(-) background resulted in a large increase in the number of [Formula: see text] particles and [Formula: see text] pits, indicating that these proteins are, independent of each other, involved in the formation of [Formula: see text] particles and [Formula: see text] pits. The simplest explanation for the results is that in wild-type cells each particle consists of LPS complexed with some molecules of a single protein species, stabilized by either divalent cations or polyamines. It is hypothesized that the outer membrane of the wild-type cell contains a heterogeneous population of particles, of which 75% consists of protein b-LPS, protein c-LPS, and protein d-LPS particles. A function of these particles as aqueous pores is proposed.  相似文献   

18.
泛素-蛋白水解酶复合体通路与病毒侵染   总被引:5,自引:0,他引:5  
泛素-蛋白水解酶复合体通路(Ubiquitinproteasome pathway, UPP)是细胞内依赖于ATP、非溶酶体途径的蛋白质降解通路,广泛参与包括细胞周期调控、细胞凋亡、信号转导、转录调控、免疫应答及抗原呈递等多种机体代谢活动。UPP在病毒侵染中作用的研究仍处于起步阶段。已发现,昆虫病毒和非洲猪瘟病毒分别是迄今发现唯一编码泛素和泛素连接酶的病毒。最近,大量的研究表明,病毒利用宿主细胞的UPP逃避免疫系统监控、促进病毒复制以及进行病毒粒子的组装和释放。  相似文献   

19.
20.
J T Guo  J C Pugh 《Journal of virology》1997,71(2):1107-1114
We have investigated the membrane topology of the large envelope protein of duck hepatitis B virus (DHBV) by protease protection and Western blot analysis, using monoclonal antibodies specific for the pre-S and S regions of the DHBV envelope to characterize protease-resistant polypeptides. These studies showed that DHBV L protein exhibits a mixed membrane topology similar to that of human hepatitis B virus L, with approximately half of the L molecules displaying pre-S on the surface of virus particles and the remainder with pre-S sequestered inside the virus envelope. The C-terminal region of DHBV pre-S was susceptible to protease digestion on all DHBV particle L protein, indicating that this region was externally disposed. DHBV L protein pre-S was entirely cytosolic immediately after synthesis. Our data, therefore, suggested that an intermediate form of the DHBV L molecule exists in mature envelope particles in which L is partially translocated or exists in a translocation-ready conformation. Incubation of virus particles at low pH and 37 degrees C triggered conversion of this intermediate into a fully translocated form. We have proposed a model for pre-S translocation based on our results that invokes the presence of an aqueous pore in the virus envelope, most likely created by oligomerization of transmembrane domains in the S region. The model predicts that pre-S is transported through this pore and that a loop structure is formed because the N terminus remains anchored to the inner face of the membrane. This translocation process occurs during particle morphogenesis and may also be a prerequisite to virus uncoating during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号