首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The release of iron from ferritin is important in the formation of iron proteins and for the management of diseases in both animals and plants associated with abnormal accumulations of ferritin iron. Much more iron can be released experimentally by reduction of the ferric hydrous oxide core than by chelation of Fe3+ which has led to the notion that reduction is also the major aspect of iron release in vivo. Variations in the kinetics of reduction of the mineral core of ferritin have been attributed to the redox potential of the reductant, redox properties of the iron core, the structure of the protein coat, the analytical method used to detect Fe2+ and reactions at the surface of the mineral. Direct measurements of the oxidation state of the iron during reduction has never been used to analyze the kinetics of reduction, although Mössbauer spectroscopy has been used to confirm the extent of reduction after electrochemical reduction using dispersive X-ray absorption spectroscopy (DXAS). We show that the near edge of X-ray absorption spectra (XANES) can be used to quantify the relative amounts of Fe2+ and Fe3+ in mixtures of the hydrated ions. Since the nearest neighbors of iron in the ferritin iron core do not change during reduction, XANES can be used to monitor directly the reduction of the ferritin iron core. Previous studies of iron core reduction which measured by Fe2+ · bipyridyl formation, or coulometric reduction with different mediators, suggested that rates depended mainly on the redox potential of the electron donor. When DXAS was used to measure the rate of reduction directly, the initial rate was faster than previously measured. Thus, previously measured differences in reduction rates appear to be influenced by the accessibility of Fe2+ to the complexing reagent or by the electrochemical mediator. In the later stages of ferritin iron core dissolution, reduction rates drop dramatically whether measured by DXAS or formation of Fe2+ complexes. Such results emphasize the heterogeneity of ferritin core structure.  相似文献   

2.
铁核结构对马脾铁蛋白释放铁动力学的影响   总被引:1,自引:0,他引:1  
建立H^% 参与马脾铁蛋白释放铁的动力方程,H^ 以1/2级反应方式参与铁蛋白释放铁核表层的铁。在酸性介质(PH6.5)中,铁蛋白释放铁的总平均速率(332Fe^3 /HSF.min)比在碱性介质(P8H8.0)中放铁的总平均速率(73Fe^3 /HSF.min)高4.6倍,铁蛋白的铁核结构和外加的磷酸盐均能影响该蛋白释放的速率,但并不改变其反应级数。  相似文献   

3.
Fe2+ binding to both apo- and holo- bacterial ferritin from Azotobacter vinelandii (AVBF) was measured as a function of pH under carefully controlled anaerobic conditions. Fe2+ binding to apo-AVBF is strongly pH dependent with 25 Fe2+ ions/apo-AVBF binding tightly at pH 5.5 and over 150 Fe2+/apo-AVBF at pH 9.0. Holo-AVBF gave a similar pH-dependent binding profile with over 400 Fe2+/AVBF binding at pH of 9.0. Proton release per Fe2+ bound to either AVBF protein increases with increasing pH until a total of about two protons are released at pH 9.0. These binding results are both qualitatively and quantitatively different from corresponding measurements (Jacobs et al., 1989) on apo- and holo- mammalian ferritin (MF) where less Fe2+ binds in both cases. The high level of Fe2+ binding to holo-AVBF relative to that of mammalian ferritin is a consequence of the higher phosphate content in the core of AVBF. Reduction of AVBF by either dithionite or methyl viologen in the absence of chelating agents demonstrated that phosphate, but not Fe2+, is released from the AVBF core in amounts commensurate with the degree of iron reduction, although even at 100% reduction considerable phosphate remains associated with the reduced mineral core. Fe2+ binding to holo-AVBF made deficient in phosphate was lower than that of native AVBF, while the addition of phosphate to native holo-AVBF increased the Fe2+ binding capacity. These results clearly support the role of phosphate as the site of interaction of Fe2+ with the AVBF mineral core.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Stabilization of iron in a bioavailable form is the function of ferritin, a protein of 24 subunits forming a coat around a core of less than or equal to 4500 hydrated iron atoms. The core of ferritin isolated from tissues contains Fe3+, but Fe2+ is required for experimental core formation in protein coats; reduction of Fe3+ to Fe2+ facilitates iron removal from protein coats. Using the differences in x-ray absorption spectra (x-ray absorption near edge structure) between Fe2+ and Fe3+ to monitor reconstitution of ferritin from Fe2+ and protein coats, we observed stabilization of Fe2+, apparently inside the coat. Mixtures of Fe2+ and Fe3+ persisted for greater than or equal to 16 h in air indicating that, in vivo, some iron in ferritin could be stored as Fe2+ and with Fe3+ could yield magnetite.  相似文献   

5.

Background

Most models for ferritin iron release are based on reduction and chelation of iron. However, newer models showing direct Fe(III) chelation from ferritin have been proposed. Fe(III) chelation reactions are facilitated by gated pores that regulate the opening and closing of the channels.

Scope of review

Results suggest that iron core reduction releases hydroxide and phosphate ions that exit the ferritin interior to compensate for the negative charge of the incoming electrons. Additionally, chloride ions are pumped into ferritin during the reduction process as part of a charge balance reaction. The mechanism of anion import or export is not known but is a natural process because phosphate is a native component of the iron mineral core and non-native anions have been incorporated into ferritin in vitro. Anion transfer across the ferritin protein shell conflicts with spin probe studies showing that anions are not easily incorporated into ferritin. To accommodate both of these observations, ferritin must possess a mechanism that selects specific anions for transport into or out of ferritin. Recently, a gated pore mechanism to open the 3-fold channels was proposed and might explain how anions and chelators can penetrate the protein shell for binding or for direct chelation of iron.

Conclusions and general significance

These proposed mechanisms are used to evaluate three in vivo iron release models based on (1) equilibrium between ferritin iron and cytosolic iron, (2) iron release by degradation of ferritin in the lysosome, and (3) metallo-chaperone mediated iron release from ferritin.  相似文献   

6.
The origin of previously observed variations in stoichiometry of iron oxidation during the oxidative deposition of iron in ferritin has been poorly understood. Knowledge of the stoichiometry of Fe(II) oxidation by O2 is essential to establishing the mechanism of iron core formation. In the present work, the amount of Fe(II) oxidized was measured by M?ssbauer spectrometry and the O2 consumed by mass spectrometry. The number of protons produced in the reaction was measured by "pH stat" titration and hydrogen peroxide production by the effect of the enzyme catalase on the measured stoichiometry. For protein samples containing low levels of iron (24 Fe(II)/protein) the stoichiometry was found to be 1.95 +/- 0.18 Fe(II)/O2 with H2O2 being a product, viz. Equation 1. 2Fe2+ + O2 + 4H2O----2FeOOH + H2O2 + 4H+ (1) EPR spin trapping experiments showed no evidence of superoxide radical formation. The stoichiometry markedly increased with additional iron (240-960 Fe/protein), to a value of 4 Fe(II)/O2 as in Equation 2. 4Fe2+ + O2 + 6H2O----4FeOOH + 8H+ (2) As the iron core is progressively laid down, the mechanism of iron oxidation changes from a protein dominated process with H2O2 being the primary product of O2 reduction to a mineral surface dominated process where H2O is the primary product. These results emphasize the importance of the apoferritin shell in facilitating iron oxidation in the early stage of iron deposition prior to significant development of the polynuclear iron core.  相似文献   

7.
M J Yablonski  E C Theil 《Biochemistry》1992,31(40):9680-9684
Ferritin is a large protein, highly conserved among higher eukaryotes, which reversibly stores iron as a mineral of hydrated ferric oxide. Twenty-four polypeptides assemble to form a hollow coat with the mineral inside. Multiple steps occur in iron core formation. First, Fe2+ enters the protein. Then, several alternate paths may be followed which include oxidation at site(s) on the protein, oxidation on the core surface, and mineralization. Sequence variations occur among ferritin subunits which are classified as H or L; Fe2+ oxidation at sites on the protein appears to be H-subunit-specific or protein-specific. Other steps of ferritin core formation are likely to involve conserved sites in ferritins. Since incorporation of Fe2+ into the protein must precede any of the other steps in core formation, it may involve sites conserved among the various ferritin proteins. In this study, accessibility of Fe2+ to 1,10-phenanthroline, previously shown to be inaccessible to Fe2+ inside ferritin, was used to measure Fe2+ incorporation in two different ferritins under various conditions. Horse spleen ferritin (L/H = 10-20:1) and sheep spleen ferritin (L/H = 1:1.6) were compared. The results showed that iron incorporation measured as inaccessibility of Fe2+ to 1,10-phenanthroline increased with pH. The effect was the same for both proteins, indicating that a step in iron core formation common among ferritins was being measured. Conserved sites previously proposed for different steps in ferritin core formation are at the interfaces of pairs and trios of subunits. Dinitrophenol cross-links, which modify pairs of subunits and affect iron oxidation, had no effect on Fe2+ incorporation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Apo horse spleen ferritin (apo HoSF) was reconstituted to various core sizes (100-3500 Fe3+/HoSF) by depositing Fe(OH)3 within the hollow HoSF interior by air oxidation of Fe2+. Fe2+ and phosphate (Pi) were then added anaerobically at a 1:4 ratio, and both Fe2+ and Pi were incorporated into the HoSF cores. The resulting Pi layer consisted of Fe2+ and Pi at about a 1:3 ratio which is strongly attached to the reconstituted ferritin mineral core surface and is stable even after air oxidation of the bound Fe2+. The total amount of Fe2+ and Pi bound to the iron core surface increases as the core volume increases up to a maximum near 2500 iron atoms, above which the size of the Pi layer decreases with increasing core size. M?ssbauer spectroscopic measurements of the Pi-reconstituted HoSF cores using 57Fe2+ show that 57Fe3+ is the major species present under anaerobic conditions. This result suggests that the incoming 57Fe2+ undergoes an internal redox reaction to form 57Fe3+ during the formation of the Pi layer. Addition of bipyridine removes the 57Fe3+ bound in the Pi layer as [57Fe(bipy)3]2+, showing that the bound 57Fe2+ has not undergone irreversible oxidation. This result is related to previous studies showing that 57Fe2+ bound to native core is reversibly oxidized under anaerobic conditions in native holo bacterial and HoSF ferritins. Attempts to bury the Pi layer of native or reconstituted HoSF by adding 1000 additional iron atoms were not successful, suggesting that after its formation, the Pi layer "floats" on the developing iron mineral core.  相似文献   

9.
R K Watt  R B Frankel  G D Watt 《Biochemistry》1992,31(40):9673-9679
Apo horse spleen ferritin undergoes a 6.3 +/- 0.5 electron redox reaction at -310 mV at pH 6.0-8.5 and 25 degrees C to form reduced apoferritin (apoMFred). Reconstituted ferritin containing up to 50 ferric ions undergoes reduction at the same potential, taking up one electron per ferric ion and six additional electrons by the protein. We propose that apo mammalian ferritin (apoMF) contains six redox centers that can be fully oxidized forming oxidized apoferritin (apoMFox) or fully reduced forming apoMFred. ApoMFred can be prepared conveniently by dithionite or methyl viologen reduction. ApoMFred is slowly oxidized by molecular oxygen but more rapidly by Fe(CN)6(3-) to apoMFox. Fe(III)-cytochrome c readily oxidizes apoMFred to apoMFox with a stoichiometry of 6 Fe(III)-cytochrome c per apoMFred, demonstrating a rapid interprotein electron-transfer reaction. Both redox states of apoMF react with added Fe3+ and Fe2+. Addition of eight Fe2+ to apoMFox under anaerobic conditions produced apoMFred and Fe3+, as evidenced by the presence of a strong g = 4.3 EPR signal. Subsequent addition of bipyridyl produced at least six Fe(bipyd)3(2+) per MF, establishing the reversibility of this internal electron-transfer process between the redox centers of apoMF and bound iron. Incubation of apoMFred with the Fe(3+)-ATP complex under anaerobic conditions resulted in the formation and binding of two Fe2+ and four Fe3+ by the protein. The various redox states formed by the binding of Fe2+ and Fe3+ to apoMFox and apoMFred are proposed and discussed. The yellow color of apoMF appears to be an integral characteristic of the apoMF and is possibly associated with its redox activity.  相似文献   

10.

Background

Ferritin detoxifies excess of free Fe(II) and concentrates it in the form of ferrihydrite (Fe2O3·xH2O) mineral. When in need, ferritin iron is released for cellular metabolic activities. However, the low solubility of Fe(III) at neutral pH, its encapsulation by stable protein nanocage and presence of dissolved O2 limits in vitro ferritin iron release.

Methods

Physiological reducing agent, NADH (E1/2?=??330?mV) was inefficient in releasing the ferritin iron (E1/2?=?+183?mV), when used alone. Thus, current work investigates the role of low concentration (5–50?μM) of phenazine based electron transfer (ET) mediators such as FMN, PYO - a redox active virulence factor secreted by Pseudomonas aeruginosa and PMS towards iron mobilization from recombinant frog M ferritin.

Results

The presence of dissolved O2, resulting in initial lag phase and low iron release in FMN, had little impact in case of PMS and PYO, reflecting their better ET relay ability that facilitates iron mobilization. The molecular modeling as well as fluorescence studies provided further structural insight towards interaction of redox mediators on ferritin surface for electron relay.

Conclusions

Reductive mobilization of iron from ferritin is dependent on the relative rate of NADH oxidation, dissolved O2 consumption and mineral core reduction, which in turn depends on E1/2 of these mediators and their interaction with ferritin.

General significance

The current mechanism of in vitro iron mobilization from ferritin by using redox mediators involves different ET steps, which may help to understand the iron release pathway in vivo and to check microbial growth.  相似文献   

11.
BackgroundFerritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed.MethodsThe iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522 nm where the Fe(II)–bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton.Results and conclusionsUnder our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed.General significanceCaution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.  相似文献   

12.
The role of iron in the peroxidation of polyunsaturated fatty acids is reviewed, especially with respect to the involvement of oxygen radicals. The hydroxyl radical can be generated by a superoxide-driven Haber-Weiss reaction or by Fenton's reaction; and the hydroxyl radical can initiate lipid peroxidation. However, lipid peroxidation is frequently insensitive to hydroxyl radical scavengers or superoxide dismutase. We propose that the hydroxyl radical may not be involved in the peroxidation of membrane lipids, but instead lipid peroxidation requires both Fe2+ and Fe3+. The inability of superoxide dismutase to affect lipid peroxidation can be explained by the fact that the direct reduction of iron can occur, exemplified by rat liver microsomal NADPH-dependent lipid peroxidation. Catalase can be stimulatory, inhibitory or without affect because H2O2 may oxidize some Fe2+ to form the required Fe3+, or, alternatively, excess H2O2 may inhibit by excessive oxidation of the Fe2+. In an analogous manner reductants can form the initiating complex by reduction of Fe3+, but complete reduction would inhibit lipid peroxidation. All of these redox reactions would be influenced by iron chelation.  相似文献   

13.
Aqueous extract of Podophyllum species has been reported to render significant protection against radiation induced mortality, cytogenetic damage and cell death. In view of this, present study was undertaken to investigate its antioxidant properties. Chelation, oxidation and reduction of Fe2+ and Fe3+ were measured using chelating agents 2-2' bipiridyl and potassium thiocyanate respectively. Podophyllum extract, in a dose dependent manner, chelated Fe2+ more efficiently than Fe3+ and also modulated Fe2+/Fe3+ ratio. Homogenate of mouse liver was used to measure TBARS for estimating lipid peroxidation. Podophyllum extract also inhibited lipid peroxidation in a dose dependent manner and maximum inhibition (92%) was achieved at 1000 micrograms/ml concentration. These results demonstrates that Podophyllum exhibits antioxidant properties as seen through chelation and modulation of redox state of iron ions and these may primarily contribute towards its radioprotective manifestation.  相似文献   

14.
In the marine teleost intestine the secretion of bicarbonate increases pH of the lumen (pH 8.4 -9.0) and importantly reduces Ca2+ and Mg2+ concentrations by the formation of insoluble divalent ion carbonates. The alkaline intestinal environment could potentially also cause essential metal carbonate formation reducing bioavailability. Iron accumulation was assessed in the Gulf toadfish (Opsanus beta) gut by mounting intestine segments in modified Ussing chambers fitted to a pH-stat titration system. This system titrates to maintain lumen pH constant and in the process prevents bicarbonate accumulation. The luminal saline pH was clamped to pH 5.5 or 7.0 to investigate the effect of proton concentrations on iron uptake. In addition, redox state was altered (gassing with N2, addition of dithiothreitol (DTT) and ascorbate) to evaluate Fe3+ versus Fe2+ uptake, enabling us to compare a marine teleost intestine model for iron uptake to the mammalian system for non-haem bound iron uptake that occurs via a ferrous/proton (Fe2+/H+) symporter called Divalent Metal Transporter 1 (DMT1). None of the redox altering strategies affected iron (Fe3+ or Fe2+) binding to mucus, but the addition of ascorbate resulted in a 4.6-fold increase in epithelium iron accumulation. This indicates that mucus iron binding is irrespective of valency and suggests that ferrous iron is preferentially transported across the apical surface. Altering luminal saline pH from 7.0 to 5.5 did not affect ferric or ferrous iron uptake, suggesting that if iron is entering via DMT1 in marine fish intestine this transporter works efficiently under circumneutral conditions.  相似文献   

15.
Listeria innocua Dps (DNA binding protein from starved cells) affords protection to DNA against oxidative damage and can accumulate about 500 iron atoms within its central cavity through a process facilitated by a ferroxidase center. The chemistry of iron binding and oxidation in Listeria Dps (LiDps, formerly described as a ferritin) using H(2)O(2) as oxidant was studied to further define the mechanism of iron deposition inside the protein and the role of LiDps in protecting DNA from oxidative damage. The relatively strong binding of 12 Fe(2+) to the apoprotein (K(D) approximately 0.023 microM) was demonstrated by isothermal titration calorimetry, fluorescence quenching, and pH stat experiments. Hydrogen peroxide was found to be a more efficient oxidant for the protein-bound Fe(2+) than O(2). Iron(II) oxidation by H(2)O(2) occurs with a stoichiometry of 2 Fe(2+)/H(2)O(2) in both the protein-based ferroxidation and subsequent mineralization reactions, indicating complete reduction of H(2)O(2) to H(2)O. Electron paramagnetic resonance (EPR) spin-trapping experiments demonstrated that LiDps attenuates the production of hydroxyl radical by Fenton chemistry. DNA cleavage assays showed that the protein, while not binding to DNA itself, protects it against the deleterious combination of Fe(2+) and H(2)O(2). The overall process of iron deposition and detoxification by LiDps is described by the following equations. For ferroxidation, Fe(2+) + Dps(Z)--> [(Fe(2+))-Dps](Z+1) + H(+) (Fe(2+) binding) and [(Fe(2+))-Dps](Z+1) + Fe(2+) + H(2)O(2) --> [(Fe(3+))(2)(O)(2)-Dps](Z+1) + 2H(+) (Fe(2+) oxidation/hydrolysis). For mineralization, 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH((core)) + 4H(+) (Fe(2+) oxidation/hydrolysis). These reactions occur in place of undesirable odd-electron redox processes that produce hydroxyl radical.  相似文献   

16.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

17.
To study the functional differences between human ferritin H- and L-chains and the role of the protein shell in the formation and growth of the ferritin iron core, we have compared the kinetics of iron oxidation and uptake of ferritin purified from human liver (90% L) and of the H-chain homopolymer overproduced in Escherichia coli (100% H). As a control for iron autocatalytic activity, we analyzed the effect of Fe(III) on the iron uptake reaction. The results show that the H-chain homopolymer has faster rates of iron uptake and iron oxidation than liver ferritin in all the conditions analyzed and that the difference is reduced in the conditions in which iron autocatalysis in high: i.e. at pH 7 and in presence of iron core. We have also analyzed the properties of two engineered H-chains, one lacking the last 22 amino acids at the carboxyl terminus and the other missing the first 13 residues at the amino terminus. These mutant proteins assemble in ferritin-like proteins and maintain the ability to catalyze iron oxidation. The deletion at the carboxyl terminus, however, prevents the formation of a stable iron core. It is concluded that the ferritin H-chain has an iron oxidation site which is separated from the sites of iron transfer and hydrolysis and that either the integrity of the molecule or the presence of the amino acid sequences forming the hydrophobic channel is necessary for iron core formation.  相似文献   

18.
Ferric nitrilotriacetate, which causes in vivo organ injury, induced lipid peroxidation and cell death in Ehrlich ascites tumor cells in vitro. The process was inhibited by butylated hydroxyanisole and enhanced by vitamin C and linolenic acid, indicating a close relationship between cytotoxicity and the lipid peroxidizing ability of Fe3+ NTA. The cytotoxicity was suppressed by glucose and a temperature below 20 degrees C. Lipid peroxidation of Fe3+ NTA-treated cells was greater at 0 degree C than at 37 degrees C, contrary to results with Fe3+ NTA-treated plasma membranes of Ehrlich ascites tumor cell. These results suggested that metabolism and membrane fluidity are important factors in the expression of the Fe3+ NTA-induced cytotoxicity. H2O2 showed a lower cytotoxicity than did Fe3+ NTA but a greater lipid peroxidizing ability. H2O2 appeared to damage the cells less, and was quenched rapidly by cellular metabolism unlike Fe3+ NTA. In transferrin-free medium, Ehrlich ascites tumor cell readily incorporated Fe3+ NTA, and iron uptake was greater than NTA-uptake in Fe3+ NTA-treated cells, suggesting that Ehrlich ascites tumor cell incorporated iron from Fe3+NTA and metabolized it into an inert form such as ferritin.  相似文献   

19.
In ferritin, iron is stored by oxidative deposition of the ferrous ion to form a hydrous ferric oxide mineral core. Two intermediates, formed during the initial stages of iron accumulation in apoferritin, have been observed previously in our laboratory and have been identified as a mononuclear Fe3(+)-protein complex and a mixed-valence Fe2(+)-Fe3(+)-protein complex. The physical characteristics of the mixed-valence Fe2(+)-Fe3+ complex and its relationship to the mononuclear Fe3+ complex in horse spleen apoferritin samples to which 0-240 iron atoms were added was examined by EPR spectroscopy. The results indicate that the mononuclear complex is not a precursor to the formation of the mixed-valence complex. Competitive binding studies with Cd2+, Zn2+, Tb3+, and UO2+(2) suggest that the mixed-valence complex is formed on the interior of the protein in the vicinity of the 2-fold axis of the subunit dimer. The mixed-valence complex could be generated by the partial oxidation of Fe2+ in apoferritin containing 120 Fe2+ or by the addition of up to 120 Fe2+ to ferritin already containing 18 Fe3+/protein molecule. The fact that the complex is generated during early Fe2+ oxidation suggests that it may be a key intermediate during the initial oxidative deposition of iron in the protein. The unusual EPR powder lineshape at 9.3 GHz of the mixed-valence complex was simulated with a rhombic g-tensor (gx = 1.95, gy = 1.88, gz = 1.77) and large linewidths and g-strain parameters. The presence of significant g-strain in the complex probably accounts for the failure to observe an EPR signal at 35 GHz and likely reflect considerable flexibility in the structure of the metal site. The temperature dependence of the EPR intensity in the range 8-38 K was modeled successfully by an effective spin Hamiltonian including exchange coupling (-2JS1.S2) and zero-field terms, from which an antiferromagnetic coupling of J = -4.0 +/- 0.5 cm-1 was obtained. This low value for J may reflect the presence of a mu-oxo bridge(s) in the dimer.  相似文献   

20.
The role of the protein shell in the formation of the hydrous ferric oxide core of ferritin is poorly understood. A VO2+ spin probe study was undertaken to characterize the initial complex of Fe2+ with horse spleen apoferritin (96% L-subunits). A competitive binding study of VO2+ and Fe2+ showed that the two metals compete 1:1 for binding at the same site or region of the protein. Curve fitting of the binding data showed that the affinity of VO2+ for the protein was 15 times that of Fe2+. Electron nuclear double resonance (ENDOR) measurements on the VO(2+)-apoferritin complex showed couplings from two nitrogen nuclei, tentatively ascribed to the N1 and N3 nitrogens of the imidazole ligand of histidine. The possibility that the observed nitrogen couplings are from two different ligands is not precluded by the data, however. A pair of exchangeable proton lines with a coupling of approximately 1 MHz is tentatively assigned to the NH proton of the coordinated nitrogen. A 30-40% reduction in the intensity of the 1H matrix ENDOR line upon D2O-H2O exchange indicates that the metal-binding site is accessible to solvent and, therefore, to molecular oxygen as well. The ENDOR data provide the first evidence for a principle iron(II)-binding site with nitrogen coordination in an L-subunit ferritin. The site may be important in Fe2+ oxidation during the beginning stages of core formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号