首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.  相似文献   

2.
Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica) and a poplar (Populus × xiaozhuanica) plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.  相似文献   

3.
Harpole WS  Suding KN 《Oecologia》2011,166(1):197-205
The niche dimension hypothesis predicts that greater numbers of limiting factors can allow greater numbers of species to coexist through species' tradeoffs for different limiting factors. A prediction that follows is that addition of multiple limiting resources to plant communities will increase productivity and simultaneously decrease diversity. Species loss due to limiting resource enrichment might occur through reducing the number of resources that species compete for or by changing the identity of limiting factors. We tested these predictions of the niche dimension hypothesis in an arid annual grassland by adding combinations of nutrients: nitrogen (N), phosphorus (P), and potassium with other elements (O). We found that species number decreased while biomass increased with greater numbers of added resources. In particular, N in combinations with P or O resulted in the greatest species loss, while biomass increased super-additively with N and P together. The addition of greater numbers of added nutrients decreased the availability of light and soil moisture, consistent with a potential shift in the identity of limiting resources. Species also differed in their responses to different combinations of N, P, and O, supporting predictions of resource-ratio tradeoffs. These results are particularly notable because this experiment was conducted during a drought year in an arid grassland (226 mm annual rainfall), which might have been expected to be water-rather than nutrient-limited. Our results support the hypothesis that plant diversity may be maintained by high-dimensional tradeoffs among species in their abilities to compete for multiple limiting factors.  相似文献   

4.
Aim Although many studies support the prevailing paradigm of nitrogen (N)‐driven biodiversity loss, some have argued that phosphorus (P) may be the main culprit. This questions the generality of the global threat through N enrichment. The major objective here was to quantify the relative importance of soil N and P in explaining patterns of plant species richness, under different levels of N and P limitation. Location North‐western Europe. Methods We collected soil, productivity and plant species data from 132 semi‐natural grasslands located along a gradient of nutrient availability and atmospheric N deposition. We used linear mixed models to investigate the relation between soil nutrients, acidity, limitation and productivity on one side, and indices for plant species richness on the other. Results Mixed models explained between 38 and 50% of the total variation in species numbers, forbs and endangered species. Soil P was significantly negatively related to total species number, forbs and endangered species. Soil N was only significantly negatively related to number of forbs and endangered species. Compared with soil P, the explained variation attributed to soil N was between five‐ and twenty‐fold lower. P‐limited grasslands exhibited higher species richness, numbers of forbs and endangered species. Species richness and number of forbs decreased with lower soil acidity. N deposition was negatively related to the number of forbs and endangered species, as well as to soil acidity. Productivity was weakly positively related to soil P and negatively to species and forb numbers. We found no interaction factors between the explanatory variables. Main conclusions P enrichment can present a greater threat to biodiversity than N enrichment in at least some terrestrial ecosystems. However, as N‐ and P‐driven species loss appeared independent, our results suggest that simultaneously reducing N and P inputs is a prerequisite for maintaining maximum plant diversity.  相似文献   

5.
Dominant tree species influence community and ecosystem components through the quantity and quality of their litter. Effects of litter may be modified by activity of ecosystem engineers such as earthworms. We examined the interacting effects of forest litter type and earthworm presence on invasibility of plants into forest floor environments using a greenhouse mesocosm experiment. We crossed five litter treatments mimicking historic and predicted changes in dominant tree composition with a treatment of either the absence or presence of nonnative earthworms. We measured mass loss of each litter type and growth of a model nonnative plant species (Festuca arundinacea, fescue) sown into each mesocosm. Mass loss was greater for litter of tree species characterized by lower C:N ratios. Earthworms enhanced litter mass loss, but only for species with lower C:N, leading to a significant litter × earthworm interaction. Fescue biomass was significantly greater in treatments with litter of low C:N and greater mass loss, suggesting that rapid decomposition of forest litter may be more favorable to understory plant invasions. Earthworms were expected to enhance invasion by increasing mass loss and removing the physical barrier of litter. However, earthworms typically reduced invasion success but not under invasive tree litter where the presence of earthworms facilitated invasion success compared to other litter treatments where earthworms were present. We conclude that past and predicted future shifts in dominant tree species may influence forest understory invasibility. The presence of nonnative earthworms may either suppress of facilitate invasibility depending on the species of dominant overstory tree species and the litter layers they produce.  相似文献   

6.
The 'resource balance hypothesis' proposes that the species richness of grassland vegetation is potentially highest when the N:P ratio of plant tissues is 10–15 (co-limitation), so that species richness could be raised by fertilisation with N or P at sites with lower or higher N:P ratios, respectively. Here we use data from field surveys in Swiss, Dutch and American fens or wet grasslands to analyse what changes in N:P ratios might produce noticeable changes in species richness. Plant species numbers, above-ground biomass, tissue N and P concentrations and soil pH were recorded in plots of 0.06–4 m2. In each data set, plots with intermediate tissue N:P ratios (6–20) were on average most species-rich, but N:P ratios explained only 5–37% of the variation in species richness. Moreover, these effects were partially confounded with those of vegetation biomass and/or soil pH. The unique effects of N:P ratios (excluding those shared with biomass and pH) explained 11–17% of variation in species richness. The relationship between species richness and N:P ratios was asymmetric: plots with high N:P ratios were more species-poor than those with low N:P ratios. This was paralleled by a smaller species pool size at high N:P ratios (estimated from species numbers in multiple records), suggesting that fewer species are adapted to P-limited conditions than to N-limited conditions. According to these data, species richness in wetlands may possibly be raised by P-fertilisation when the initial N:P ratio of the vegetation is well above 20, but this option is not recommended for nature conservation as it might promote common species at the expense of rare ones.  相似文献   

7.
The N:P ratio of leaf litter may determine if decomposability is N-limited (litter with low N:P ratio) or P-limited (litter with high N:P ratio). To test this hypothesis and to determine the threshold between N and P limitation, we studied relationships between litter N and P concentrations, litter mass loss and effects of fertilisation on litter mass loss in laboratory experiments. Leaf litter of 11 graminoid species was collected in Swiss and Dutch wetlands, yielding 84 litter samples with a broad range of N and P concentrations (3.2–15.1 mg N g−1, 0.04–1.93 mg P g−1) and with N:P mass ratios ranging from 5 to 100. On nutrient-free sand, dry mass loss after five or ten weeks (5.5–53% of initial mass) correlated positively with the N and P concentrations of the litter. Within species, mass loss correlated mainly with N for litter with low N:P ratio, and with P for litter with high N:P ratio, in agreement with our hypothesis. Among species, however, these relationships did not exist, and decomposition rather correlated with the specific leaf area. When the litter was incubated on fertilised sand, 35 out of 50 litter samples decomposed faster than on nutrient-free sand. Decomposition was generally accelerated by P fertilisation (i.e. P-limited) when the N:P ratio of the litter was above 25 and the P concentration below 0.22 mg g−1, supporting our hypothesis. N-limited decomposition was not significantly related to the litter N:P ratio but occurred rarely for litter with N:P ratio greater than 25, and only for litter with N concentration below 11.3 mg g−1. We conclude that the N:P ratio of leaf litter indicates whether its decomposability is more likely to be N- or P-limited. The critical N:P ratio (threshold between N and P limitation) appeared to be 25 for graminoid leaf litter.  相似文献   

8.
以我国大兴安岭多年冻土区泥炭地常见的3种外生菌根木本植物(细叶沼柳Salix rosmarinifolia、白桦Betula platyphylla和柴桦B.fruticosa)和4种欧石楠菌根木本植物(笃斯越桔Vaccinium uliginosum、狭叶杜香Ledum palustre、甸杜Chamaedaphne calyculata和小叶杜鹃Rhododendron parrifolum)为研究对象,通过315天培养试验测定10和20℃叶片凋落物分解过程中的碳(C)累积矿化量和重量损失,并分析其温度敏感性。结果表明:外生菌根植物叶片凋落物的C矿化量和重量损失在10和20℃均高于欧石楠菌根植物;外生菌根植物凋落物分解过程中C矿化量的温度敏感性系数高于欧石楠菌根植物,但重量损失的温度敏感性系数低于欧石楠菌根植物;在每一培养温度下,C矿化量和重量损失均与凋落物全氮(N)和全磷(P)浓度呈正相关,与C/N和C/P呈负相关;尽管C矿化量的温度敏感性系数与凋落物初始化学组成无显著相关性,但重量损失的温度敏感性系数与凋落物全N和全P浓度呈负相关,与C/N和C/P呈正相关。本研究结果为认识和预测气候变暖及其引起的物种组成变化对北方泥炭地植物凋落物分解的影响提供理论依据。  相似文献   

9.
Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis < Betula < Rubus. After 4 years, overall mass loss in the climate-treatment plots was 10 % higher compared to the ambient incubation environment. Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.  相似文献   

10.
Seedlings of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh.) were grown for 2 years in mono-culture and mixed-culture and at three fertility levels. Following the second growing season, senescent leaves were analysed for N concentration, acid hydrolysable substances (AHS), and nonhydrolysable remains (NHR). A litter sub-sample was then inoculated with indigenous soil microflora, incubated 14 weeks, and mass loss was measured. Litter-N was significantly higher at medium than at poor fertility, as well as in yellow birch than in sugar maple litter. The species effect on litter-N increased with increasing fertility. At medium fertility, litter-N of sugar maple litter was lower in mixed-culture than in mono-culture. AHS, NHR as well the NHR/N ratio were significantly higher in yellow birch than in sugar maple litter. At medium fertility, the NHR/N ratio of sugar maple litter was significantly lower in mono-culture than in mixed-culture. Mass loss was significantly greater at medium and rich fertility than at poor fertility, and in yellow birch than in sugar maple litter. At poor fertility, mixed-litter decomposed at a rate comparable to yellow birch, whereas at medium and rich fertility, mixed-litter decomposed at a rate comparable to sugar maple. There was a significant positive relationship between litter-N and mass loss. A similar positive relationship between NHR and mass loss was presumed to be a species effect on decomposition. Results support the hypothesis that species × fertility and species × mixture interactions can be important determinants of litter quality and, by implication, of site nutrient cycling.  相似文献   

11.
This study investigates how nutrient cycling rates and ratios vary among fish species, with a particular focus on comparing an ecologically dominant detritivore (gizzard shad) to other fishes in a productive lake. We also examined how nutrient cycling rates are mediated by body size (as predicted by allometry theory), and how variation in nutrient cycling is related to body and food nutrient contents (according to predictions of ecological stoichiometry). As predicted by allometry, per capita nitrogen and phosphorus excretion rates increased and mass-specific excretion rates decreased, with increasing mass. Body phosphorus content was correlated with body mass only in one species, bluegill. Contrary to stoichiometric predictions, there was no relationship between body P and mass-normalized P excretion rate, or between body N:P and excreted N:P, when all individuals of all species were considered.
However, at the species level, we observed some support for a body nutrient content effect on excretion as predicted by stoichiometry theory. For example, gizzard shad had lower body P (high body N:P) and also excreted P at higher rates (lower N:P) than bluegill, which had high body P (lower body N:P). We applied the Sterner (1990) homeostatic stoichiometry model to the two most common species in the study – gizzard shad and bluegill and found that food N:P had a greater effect than consumer body N:P on excreted N:P. This indicates that, in terms of variation among these species, nutrient excretion may be more of a function of food nutrient content than the nutrient content of the consumer. These results suggest that stoichiometry can provide a framework for variation among species in nutrient cycling and for evaluating the ecosystem consequences of biodiversity loss.  相似文献   

12.
Decomposition of lignin, holocellulose, polyphenols and soluble carbohydrates was investigated in relation to nitrogen (N) dynamics in leaf litter of 14 tree species. The influence of organic chemical components and N on litter mass loss rate was then evaluated for 14 litter types. The study was carried out over a 3-year period on upper and lower parts of a forest slope in a cool temperate forest in Japan. The decomposition processes were divided into early and late phases based on N immobilization and mobilization. Mass loss rate of whole litter and organic chemical components was similar for the upper and lower sites. Litter mass loss was faster in the immobilization phase than in the mobilization phase in each of 14 litter types, which was ascribed to the decreased mass loss of holocellulose, polyphenols and soluble carbohydrates in the mobilization phase as compared to the immobilization phase. Mass loss rate of lignin was not different between the phases. Litter mass loss rate in the immobilization and mobilization phases was negatively correlated to lignin content and positively correlated to contents of polyphenols and soluble carbohydrates at the start of these phases, but was not correlated to holocellulose and N contents in either phase.  相似文献   

13.
Anthropogenically increased input of nitrogen (N) and phosphorous (P) have led to a severe reduction of plant species richness in European semi-natural grasslands. Although it is well established that this species loss is not trait neutral, a thorough analysis of the effects of nutrient addition on trait based functional diversity and functional composition, independently of species loss, is lacking so far. We compiled data on the plant species abundance (relevé’s) of 279 Nardus grasslands from nine European countries, across a gradient of soil N and P content. Functional diversity (Petchy and Gaston’s FDc, weighted FDc and quadratic entropy) and mean trait composition were calculated for each relevé, based on 21 functional traits. Differences in functional diversity and functional composition were related to differences in soil N, atmospheric N deposition, soil P and pH, while controlling for geographic location and species richness. All functional diversity measures decreased with increasing soil N, with wFDc also decreased by soil P, independent of species loss. This was accompanied by clear shifts in functional trait composition, associated with shifts from below-ground competition for nutrients to above-ground competition for light. This resulted in a decrease in insect-pollinated therophytes and chamaephytes and an increase in long-lived, clonal graminoids and hemicryptophytes under increasing soil N and P. These functional community changes can be expected to alter both ecosystem functioning and service provisioning of the studied grasslands. Our research emphasizes the importance of a reduction of both N and P emission throughout Europe for sustainable conservation of these communities.  相似文献   

14.
Effects of differences in long-term water supply were examined on soil characteristics, primary production and species composition in a wet and a dry site of an upland herbaceous grassland. Also the responses of species to N and P enrichments were examined. N and P concentrations of non-legume species were positively related, indicating that biomass N:P ratios seem to be mainly determined by N:P supply ratios. Forbs had generally higher concentrations than graminoids. Intermittent water inundation of soil in the wet site resulted in greater soil N and P availability. The greater productivity of this site promoted the growth of forbs. A fertilizer experiment showed that biomass was limited by N only in the wet site, but by both nutrients in the dry one. The species with the higher N and P concentrations were favored more after N and P enrichment, respectively; however, species enhancement was not related to N:P ratios of species. This indicates that N and P concentrations of species, rather than N:P ratios of species, are better predictors of species responses to N and P enrichment. N:P ratios of whole communities were 8.73 for the wet and 11.36 for the dry site. These values in comparison with the responses of plant communities to N and P fertilization show that thresholds of N:P ratios indicative of N or P limitation are much lower than those found for European wetlands.  相似文献   

15.
Richard C. Cobb 《Oikos》2010,119(8):1291-1298
Insect and disease outbreak is an important cause of selective species removal and accompanying functional change in North American forests. Outbreak of hemlock woolly adelgid, Adelgies tsugae– HWA, is causing selective removal of eastern hemlock Tsuga canadensis at a regional scale. Impacts of outbreak‐caused canopy mortality and shifts in dominant species on litter decay were compared across sites that range in HWA‐caused canopy damage and subsequent canopy dominance by black birch Betula lenta. Senescent litter from eastern hemlock, black birch, and equal litter mixes were decomposed in the field for 36 months within nine sites in Connecticut and Massachusetts USA. Mass loss and % N accumulation of black birch was 65% and 52% greater compared to eastern hemlock. In contrast, outbreak related canopy damage increased litter mass loss by 11.5% in high mortality stands relative to uninfested stands but canopy damage had no impact on % N dynamics. Non‐additive effects of litter mixing influenced chemical dynamics of decaying litter; black birch accumulated less N and eastern hemlock accumulated more N compared to each species decaying alone. However, these changes offset and mixed litter bags overall showed no differences in N dynamics compared to values from each species decaying alone. In eastern hemlock stands invaded by hemlock woolly adelgid, canopy damage influences the rates and dynamics of decay but species differences between hemlock and black birch leaf litter are the dominant mechanisms of decomposition changes and a long‐lasting driver of increased N cycling rates. Species shifts may be the dominant driver of altered ecosystem processes for other insect outbreaks, particularly when replacement species have very different characteristics regulating decomposition and N cycling.  相似文献   

16.
Persistence of Denitrifying Enzyme Activity in Dried Soils   总被引:8,自引:2,他引:6       下载免费PDF全文
The effects of air drying soil on denitrifying enzyme activity, denitrifier numbers, and rates of N gas loss from soil cores were measured. Only 29 and 16% of the initial denitrifying enzyme activity in fresh, near field capacity samples of Maury and Donerail soils, respectively, were lost after 7 days of air drying. The denitrifying activity of bacteria added to soil and activity recently formed in situ were not stable during drying. When dried and moist soil cores were irrigated, evolution of N gas began, and it maximized sooner in the dried cores. This suggests that the persistence of denitrifying enzymes permits accelerated denitrification when dried soils are remoistened. Enzyme activity increased significantly in these waterlogged cores, but fluctuations in enzyme activity were small compared with fluctuations in actual denitrification rate, and enzyme activities were always greater than denitrification rates. Apparent numbers of isolatable denitrifiers (most-probable-number counts) decreased more than enzyme activity as the soils were dried, but after the soils were rewetted, the extent of apparent growth was not consistently related to the magnitude of N loss. We hypothesize that activation-inactivation of existing enzymes by soil O2 is of greater significance in transient denitrification events than is growth of denitrifiers or synthesis of new enzymes.  相似文献   

17.
为揭示高寒草地物种多样性和地上生物量以及二者之间关系对养分添加的响应模式,该研究以天山高寒草地为对象,通过两年的多重养分添加实验,研究氮(N)、磷(P)、钾(K)3种养分单独和组合添加对天山高寒草地群落物种多样性和地上生物量的影响。结果表明:(1)养分添加使当地植物物种多样性不同程度地减少,其中以N+P、N+K、N+P+K添加的效应最为显著,多重养分添加导致的土壤生态位维度降低是当地物种丧失的重要原因。(2)养分添加能显著提高群落地上生物量,其中N为第一限制养分,解除N限制后P和K成为限制养分, N+P+K复合添加对地上生物量的提高最为显著。(3)养分添加两年后,地上生物量与物种丰富度之间无显著回归关系且地上生物量增加主要是由于禾草类生物量增加导致,说明地上生物量主要由少数优势种决定而非群落物种数。  相似文献   

18.
物种共存取决于生物自身属性及生境异质性等多重因素的综合效应.本研究基于较大空间尺度(21°-35° N)的野外调查,比较了水生型入侵植物空心莲子草与其本土共存种双穗雀稗在形态及化学计量特征等方面的差异,并分析了环境因子对二者属性差异的影响.结果 表明:空心莲子草盖度和重要值显著大于双穗雀稗(34.3%、104.0%),...  相似文献   

19.
以青藏高原高寒草甸为研究对象, 通过人工氮肥添加试验, 研究6个群落优势种在不同施氮(N)水平下叶片碳(C)、N、磷(P)元素含量的变化以及生态化学计量学特征。结果表明: 自然条件下, 6个物种叶片N、P质量浓度存在显著的差异, 表现为: 黄花棘豆(Oxytropis ochrocephala)最高, 为24.5和2.51 g·kg-1, 其叶片N含量低于而P含量高于我国其他草地的豆科植物; 其余5个物种叶片N、P质量浓度分别为11.5-18.1和1.49-1.72 g·kg-1, 嵩草(Kobresia myosuroides)叶片N含量最低, 垂穗披碱草(Elymus nutans)叶片P含量最低, 与我国其他区域的研究结果相比, 其叶片N和P含量均低于我国其他草地非豆科植物。随氮素添加量的增大, 6种群落优势种叶片的C和P含量保持不变; 其他5种植物叶片N含量显著增加, 黄花棘豆叶片N含量保持不变。未添加氮肥时, 6种植物叶片N:P为7.3-11.2, 说明该区植物生长更多地受N限制。随N添加量的增加, 除黄花棘豆外, 其他5种植物叶片N:P大于16, 表现为植物生长受P限制。综合研究表明, 青藏草原高寒草甸植物叶片N含量较低, 植物受N影响显著, 但不同物种对N的添加反应不同, 豆科植物黄花棘豆叶片对N添加不敏感, 其他5个物种叶片全N含量随着N添加量的升高而增加, 该研究结果可为高寒草甸科学施肥提供理论依据。  相似文献   

20.
Kennard  D. K.  Gholz  H. L. 《Plant and Soil》2001,234(1):119-129
We compared soil nutrient availability and soil physical properties among four treatments (high-intensity fire, low-intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (Anadenanthera colubrina Vell. Conc.) as a bioassay. Surface soils in high-intensity fire treatments had significantly greater pH values, concentrations of extractable calcium (Ca), potassium (K), magnesium (Mg), and phosphorus (P), and amounts of resin-available P and nitrogen (N) than other treatments; however, a loss of soil organic matter during high-intensity fires likely resulted in increased bulk density and strength, and decreased water infiltration rates. Low intensity fires also significantly increased soil pH, concentrations of extractable Ca, K, Mg, and P, and amounts of resin-available P and N, although to a lesser degree than high-intensity fires. Low-intensity fires did not lower soil organic matter contents or alter soil physical properties. Plant removal and harvesting gap treatments had little effect on soil chemical and physical properties. Despite the potentially negative effects of degraded soil structure on plant growth, growth of A. colubrina seedlings were greater following high-intensity fires. Evidently, the increase in nutrient availability caused by high-intensity fires was not offset by degraded soil structure in its effects on seedling growth. Long-term effects of high intensity fires require further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号