首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a new approach to model powder compression during tableting. The purpose of this study is to introduce a new discrete element simulation model for particle–particle bond formation during tablet compression. This model served as the basis for calculating tablet strength distribution during a compression cycle. Simulated results were compared with real tablets compressed from microcrystalline cellulose/theophylline pellets with various compression forces. Simulated and experimental compression forces increased similarly. Tablet-breaking forces increased with the calculated strengths obtained from the simulations. The calculated bond strength distribution inside the tablets showed features similar to those of the density and pressure distributions in the literature. However, the bond strength distributions at the center of the tablets varied considerably between individual tablets.  相似文献   

2.
Free-flowing proniosomal powders of acemetacin (AC) were prepared using the slurry method and maltodextrin as carrier. Positively charged proniosomes composed of 70:20:10 of Span 60/cholesterol (Chol)/stearylamine (SA), respectively, were successively compressed into tablets using direct compression method. The tablets were characterized for weight variability, friability, hardness, drug content uniformity, and dissolution properties. The in vivo evaluation of the prepared proniosomes (powder or tablet forms) after oral administration was investigated by the determination of AC and its active metabolite indomethacin (IND) in the blood of albino rabbits. Results indicated that the increase of Chol from 10% to 20% markedly reduced the efflux of the drug. Further Chol addition from 30% to 50% led to increased AC release rates. The proniosome tablets of AC showed greater hardness and disintegration time and less friability than AC plain tablets. The dissolution of proniosomal tablets indicated a lower drug release percentage compared to powdered proniosomes and AC plain tablets. The mean pharmacokinetic parameters of AC and IND from different formulations indicated increased t1/2 and area under the curve (AUC) of both AC and IND for proniosomal tablets compared with both proniosomal powders and AC plain tablets. This study suggested the formulation of AC proniosomal powder into tablets to control and extend its pharmacologic effects.KEY WORDS: acemetacin, proniosomes, sustained-release tablet, pharmacokinetics  相似文献   

3.
The aim of this study was to compare the densification of powder mixtures on eccentric and rotary tablet presses and to establish relationships with the halving properties of the resulting scored tablets. This is an important problem because the recent guidelines of EU require verification of the equal masses of tablet halves. The models of Walker, Heckel, and Kawakita were used to describe the powder densification on the two machines. The calculated parameters revealed that the shorter compression cycle of rotary machines results in poorer densification and lower tablet hardness at a given compression force. This is manifested in poorer halving properties, which are influenced mainly by the hardness. Better densification improves the halving even at lower tablet hardness. This demonstrates that these parameters can be good predictors of tablet halving properties.  相似文献   

4.
A “simplex-centroid mixture design” was used to study the direct-compression properties of binary and ternary mixtures of chitin and two cellulosic direct-compression diluents. Native milled and fractioned (125–250 μm) crustacean chitin of lobster origin was blended with microcrystalline cellulose, MCC (Avicel® PH 102) and spray-dried lactose–cellulose, SDLC Cellactose® (composed of a spray-dried mixture of alpha-lactose monohydrate 75% and cellulose powder 25%). An instrumented single-punch tablet machine was used for tablet compactions. The flowability of the powder mixtures composed of a high percentage of chitin and SDLC was clearly improved. The fractioned pure chitin powder was easily compressed into tablets by using a magnesium stearate level of 0.1% (w/w) but, as the die lubricant level was 0.5% (w/w), the tablet strength collapsed dramatically. The tablets compressed from the binary mixtures of MCC and SDLC exhibited elevated mechanical strengths (>100 N) independent of the die lubricant level applied. In conclusion, fractioned chitin of crustacean origin can be used as an abundant direct-compression co-diluent with the established cellulosic excipients to modify the mechanical strength and, consequently, the disintegration of the tablets. Chitin of crustacean origin, however, is a lubrication-sensitive material, and this should be taken into account in formulating direct-compression tablets of it.  相似文献   

5.
The purpose of this research was to evaluate beta-cyclodextrin (beta-CD) as a vehicle, either singly or in blends with lactose (spray-dried or monohydrate), for preparing a meloxicam tablet. Aqueous solubility of meloxicam in presence of beta-CD was investigated. The tablets were prepared by direct compression and wet granulation techniques. The powder blends and the granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, disintegration time, and in vitro dissolution studies. The effect of beta-CD on the bioavailability of meloxicam was also investigated in human volunteers using a balanced 2-way crossover study. Phase-solubility studies indicated an A(L)-type diagram with inclusion complex of 1:1 molar ratio. The powder blends and granules of all formulations showed satisfactory flow properties, compressibility, and drug content. All tablet formulations prepared by direct compression or wet granulation showed acceptable mechanical properties. The dissolution rate of meloxicam was significantly enhanced by inclusion of beta-CD in the formulations up to 30%. The mean pharmacokinetic parameters (C(max), K(e), and area under the curve [AUC](0-infinity)) were significantly increased in presence of beta-CD. These results suggest that beta-CD would facilitate the preparation of meloxicam tablets with acceptable mechanical properties using the direct compression technique as there is no important difference between tablets prepared by direct compression and those prepared by wet granulation. Also, beta-CD is particularly useful for improving the oral bioavailablity of meloxicam.  相似文献   

6.
The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.KEY WORDS: badam gum, floating, gastroretentive, propranolol HCl, Terminalia catappa  相似文献   

7.
The purpose of this research was to evaluate β-cyclodextrin (β-CD) as a vehicle, either singly or in blends with lactose (spray-dried or monohydrate), for preparing a meloxicam tablet. Aqueous solubility of meloxicam in presence of β-CD was investigated. The tablets were prepared by direct compression and wet granulation techniques. The powder blends and the granules were evaluated for angle of repose, bulk density, compressibility index, total porosity, and drug content. The tablets were subjected to thickness, diameter, weight variation test, drug content, hardness, friability, disintegration time, and in vitro dissolution studies. The effect of β-CD on the bioavailability of meloxicam was also investigated in human volunteers using a balanced 2-way crossover study. Phase-solubility studies indicated an AL-type diagram with inclusion complex of 1∶1 molar ratio. The powder blends and granules of all formulations showed satisfactory flow properties, compressibility, and drug content. All tablet formations prepared by direct compression or wet granulation showed acceptable mechanical properties. The dissolution rate of meloxicam was significantly enhanced by inclusion of β-CD in the formulations up to 30%. The mean pharmacokinetic parameters (Cmax, Ke, and area under the curve [AUC]0−∞) were significantly increased in presence of β-CD. These results suggest that β-CD would facilitate the preparation of meloxicam tablets with acceptable mechanical properties using the direct compression technique as there is no important difference between tablets prepared by direct compression and those prepared by wet granulation. Also, β-CD is particularly useful for improving the oral bioavailablity of meloxicam.  相似文献   

8.
The purpose of this work was to evaluate and compare the functionality of bovine fatty acids-derived (MgSt-B) and vegetable fatty acids-derived (MgSt-V) magnesium stearate powders when used for the lubrication of granules prepared by high-shear (HSG) and fluid bed (FBG) wet granulation methods. The work included evaluation of tablet compression and ejection forces during tabletting and dissolution testing of the compressed tablets. Granules prepared by both granulation methods required significantly lower ejection force (p < 0.01) when lubricated with the MgSt-V powder as compared to those lubricated with the MgSt-B powder. Granules prepared by the HSG method and lubricated with the MgSt-V powder also required significantly lower compression force (p < 0.01) to produce tablets of similar weight and hardness as compared to those lubricated with the MgSt-B powder. The dissolution profiles were not affected by these differences and were the same for tablets prepared by same granulation method and lubricated with either magnesium stearate powder. The results indicate significant differences (p < 0.01) between lubrication efficiency of the MgSt-B and the MgSt-V powders and emphasize the importance of functionality testing of the MgSt powders to understand the impact of these differences. The opinions expressed in this work are only of authors, and do not necessarily reflect the policy and statements of the FDA.  相似文献   

9.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

10.
Solid-state NMR spectroscopy (SSNMR), coupled with powder X-ray diffraction (PXRD), was used to identify the physical forms of gabapentin in samples prepared by recrystallization, spray drying, dehydration, and milling. Four different crystalline forms of gabapentin were observed: form I, a monohydrate, form II, the most stable at ambient conditions, form III, produced by either recrystallization or milling, and an isomorphous desolvate produced from desolvating the monohydrate. As-received gabapentin (form II) was ball-milled for 45 min in both the presence and absence of hydroxypropylcellulose (HPC). The samples were then stored for 2 days at 50°C under 0% relative humidity and analyzed by 13C SSNMR and PXRD. High-performance liquid chromatography was run on the samples to determine the amount of degradation product formed before and after storage. The 1H T 1 values measured for the sample varied from 130 s for the as-received unstressed material without HPC to 11 s for the material that had been ball-milled in the presence of HPC. Samples with longer 1H T 1 values were substantially more stable than samples that had shorter T 1 values. Samples milled with HPC had detectable form III crystals as well. These results suggest that SSNMR can be used to predict gabapentin stability in formulated products.  相似文献   

11.
The objectives of this study were to determine the cause of the crystallization in a large volume creatine supplement solution made from effervescent powders containing di-creatine citrate, and to characterize these crystals using thermal analyses and x-ray diffractometry. Creatine effervescent powders were dissolved in deionized water (pH 6.2) and stored both at room temperature (RT) (25°C) and refrigerated condition (4°C) over a period of 45 days. Creatine concentration was determined using high-performance liquid chromatography (HPLC). Intrinsic dissolution and saturated solubility of creatine, creatine monohydrate, and di-creatine citrate in water were determined and compared. Crystal growth was detected only in the refrigerated samples on the seventh day of storage. Differential Scanning Calorimetry (DSC) and x-ray diffraction (XRD) studies revealed that the crystals formed were of creatine monohydrate. Ninety percent creatine degradation was observed within 45 days for RT samples. However, at refrigerated condition this degradation was 80% within the same time period. The pH of the RT samples also increased from 3.6 to 4.5 during storage. No such increase was observed in the case of refrigerated samples. The intrinsic dissolution rate constants of the compounds decreased in the following order: dicreatine citrate>creatine>creatine monohydrate. In conclusion, di-creatine citrate used in effervescent formulation dissociates to creatine in aqueous solution and eventually crystallizes out as creatine monohydrate. Significant decrease in solubility and effect of pH contribute to this crystallization process.  相似文献   

12.
The purpose of this investigation was to develop a rapidly disintegrating calcium carbonate (CC) tablet by direct compression and compare it with commercially available calcium tablets. CC tablets were formulated on a Carver press using 3 different forms of CC direct compressed granules (Cal-Carb 4450, Cal-Carb 4457, and Cal-Carb 4462). The breaking strength was measured using a Stokes-Monsanto hardness tester. The disintegration and dissolution properties of the tablets were studied using USP methodology. The calcium concentration was determined by an atomic absorption spectrophotometer. Scanning electron microscopy was used to evaluate the surface topography of the granules and tablets. Breaking strength of Cal-Carb 4450, Cal-Carb 4457, and Cal-Carb 4462 tablets was in the range of 7.2 to 7.7 kg, as compared with a hardness of 6.2 kg and 10 kg for the commercially available calcium tablets Citracal and Tums, respectively. The disintegration time for the tablets presented in the order earlier was 4.1, 2.1, 1.9, 2.9, and 9.7 minutes, respectively. The dissolution studies showed that all formulations released 100% of the elemental calcium in simulated gastric fluid in less than 20 minutes. In summary, this study clearly demonstrated that quick disintegrating CC tablets can be formulated without expensive effervescence technology.  相似文献   

13.
The purpose of the current study was to mask the taste of cetirizine HCl and to incorporate the granules produced in oral disintegrating tablets (ODT). The bitter, active substance was coated by fluidized bed coating using Eudragit® RL30-D at levels between 15% and 40% w/w. The ODTs were developed by varying the ratio of superdisintegrants such as sodium croscarmellose, crospovidone grades and low substituted hydroxypropyl cellulose (L-HPC). A direct compression process was used to compress the ODTs under various compaction forces to optimize tablet robustness. The properties of the compressed tablets including porosity, hardness, friability and dissolution profiles were further investigated. The in vitro and in vivo evaluation of the tablet disintegration times showed almost identical rapid disintegration below 10 s at the optimal levels of each superdisintegrant. Finally, the taste and sensory evaluation in human volunteers demonstrated excellence in masking the bitter active and tablet palatability.  相似文献   

14.
The aim of this paper was to study the effect of the granulate properties and tablet compression force on disintegrating force behavior in order to investigate the capability of the disintegrating force to characterize tablets that have the same composition but were manufactured in different conditions. Several tablets containing spironolactone in the external or internal granulated mixture of calcium carbonate and maize starch differing in particle size distribution, were prepared at 3 compression levels. The force developed by tablets during water uptake and disintegration was measured and plotted versus time. The curves obtained were analyzed by the Weibull equation in order to calculate the parameters characterizing the tablet disintegration kinetics. The disintegrating force time parameter, the maximum force developed, and the area under the curve were determined. In general, the reduction of time parameter value and/or the increase in maximum force developed corresponded to an acceleration in tablet disintegration. In addition, the area under the force curve increased in stronger tablets, monitoring in a sensitive way the tablet structural changes introduced by compression force. The results showed that the disintegrating force measurement can detect small changes in the structure of the tablet that cannot be discriminated by pharmacopoeia tests. The effect of manufacturing, in particular compression force, on tablet properties was quantified by the parameters of disintegrating force kinetics.  相似文献   

15.
Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion–spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.  相似文献   

16.
The objective of this work was to study the release behavior of prednisolone from calcium-cross-linked carboxymethyl xanthan gum (CMXG) tablets in dissolution medium having different pH values prevailing in the gastrointestinal lumen. Xanthan gum (XG) was derivatized to CMXG which was then cross-linked in situ with Ca+2 ion during wet massing step of tablet preparation. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry studies did not show any drug-polymer interaction although the drug underwent solid-state transformation during compression as evident from X-ray diffraction analysis. In vitro release study demonstrated that increase in the amount of Ca+2 ion decreased the drug release, and beyond a certain amount, the drug release increased. While increase in both drug load and tablet crushing strength decreased the drug release, increase in exposure time in acid solution of pH 1.2 increased the overall release of the drug. The mechanism of drug release was non-Fickian/anomalous. The results indicated that variation in the amount of Ca+2 ion can modulate the drug release from CMXG matrix tablets as needed.  相似文献   

17.
The aim of this work was to assess the effect of 2 formulation variables, the pectin type (with different degrees of esterification [DEs]) and the amount of calcium, on drug release from pectin-based matrix tablets. Pectin matrix tablets were prepared by blending indomethacin (a model drug), pectin powder, and various amounts of calcium acetate and then tableting by automatic hydraulic press machine. Differential scanning calorimetry, powder x-ray diffraction, and Fourier transformed-infrared spectroscopy studies of the compressed tablets revealed no drug-polymer interaction and the existence of drug with low crystallinity. The in-vitro release studies in phosphate buffer (United States Pharmacopeia) and tris buffer indicated that the lower the DE, the greater the time for 50% of drug release (T50). This finding is probably because of the increased binding capacity of pectin to calcium. However, when the calcium was excluded, the pectins with different DEs showed similar release pattern with insignificant difference of T50. When the amount of calcium acetate was increased from 0 to 12 mg/tablet, the drug release was significantly slower. However, a large amount of added calcium (ie, 24 mg/tablet) produced greater drug release because of the partial disintegration of tablets. The results were more pronounced in phosphate buffer, where the phosphate ions induced the precipitation of calcium phosphate. In conclusion, both pectin type and added calcium affect the drug release from the pectin-based matrix tablets.  相似文献   

18.
The purpose of this work was to investigate the effect of different polysulfonate resins and direct compression fillers on physical properties of multiple-unit sustained-release dextromethorphan (DMP) tablets. DMP resinates were formed by a complexation of DMP and strong cation exchange resins, Dowex 50 W and Amberlite IRP69. The tablets consisted of the DMP resinates and direct compression fillers, such as microcrystalline cellulose (MCC), dicalcium phosphate dihydrate (DCP), and spray-dried rice starch (SDRS). Physical properties of tablets, such as hardness, disintegration time, and in vitro release, were investigated. A good performance of the tablets was obtained when MCC or SDRS was used. The use of rod-like and plate-like particles of Amberlite IRP69 caused a statistical decrease in tablet hardness, whereas good tablet hardness was obtained when spherical particle of Dowex 50 W was used. The plastic deformation of the fillers, such as MCC and SDRS, caused a little change in the release of DMP. A higher release rate constant was found in the tablets containing DCP and Dowex 50 W, indicating the fracture of the resinates under compression, which was attributable to the fragmentation of DCP. However, the release of DMP from the tablets using Amberlite IRP69 was not significantly changed because of the higher degree of cross-linking of the resinates, which exhibited more resistance to deformation under compression. In conclusion, the properties of polysulfonate resin, such as particle shape and degree of cross-linking, and the deformation under compaction of fillers affect the physical properties and the drug release of the resinate tablets. Published: September 30, 2005.  相似文献   

19.
The aim of this study was to evaluate the effect of increasing epinephrine load on the characteristics of fast-disintegrating sublingual tablets for the potential emergency treatment of anaphylaxis. Four tablet formulations, A, B, C, and D, containing 0%, 6%, 12%, and 24% of epinephrine bitartrate, respectively, and microcrystalline cellulose:low-substituted hydroxypropyl cellulose (9∶1), were prepared by direct compression, at a range of compression forces. Tablet weight variation, content uniformity, hardness, disintegration time, wetting time, and friability were measured for each formulation at each compression force. All 4 tablet formulations at each compression force were within the United States Pharmacopeia (USP) limits for weight variation and content uniformity. A linear increase in compression force resulted in an exponential increase in hardness for all formulations, a linear increase in disintegration and wetting times of A, and an exponential increase in disintegration and wetting times of B, C, and D. At a mean±SD hardness of ≥2.3±0.2 kg, all tablet formulations passed the USP friability test. At a mean±SD hardness of ≤3.1±0.2 kg, all tablet formulations resulted in disintegration and wetting times of <10 seconds and <30 seconds, respectively. Tablets with drug loads from 0% to 24% epinephrine can be formulated with hardness, disintegration times, and wetting times suitable for sublingual administration.  相似文献   

20.
A new polymorph α of indiplon was discovered, initially prepared by two methods, and further characterized by various means including single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), variable temperature powder X-ray diffraction (VT-PXRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), Fourier transform Raman (FT-Raman) spectroscopy and solubility determination. The crystal structure of Form α as analyzed by SCXRD differ from the three previously reported polymorphs, Form I, II, and III. In addition, PXRD and solubility measurements could clearly distinguish between Form α and Form I. Slight differences between the two forms were also detected by FT-Raman. No differences between Form α and I were observed by DSC, which was explained by VT-PXRD results showing a solid-solid phase change from Form α to Form I during the heating process. Solubility measurements at various temperatures showed that the two polymorphs were mutually monotropic and that Form I was the relatively thermodynamically stable crystal form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号