首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two fast migrating, major, multiple molecular forms (MMF) of glucose-6-phosphate dehydrogenase [EC:1.1.1.49]: G-6-PDH-1 and G-6-PDH-2, and two minor forms: G-6-PDH-3 and G-6-PDH-4 were revealed in the electrophoregrams of both erythrocytes haemolisates as well in the homogenates of bone marrow cellular lines of rats at control conditions. Daily 1 cGy irradiation of rats up to a cumulative dose of 20 cGy led to a drop of G-6-PDH total activity and it caused a redistribution of the MMF of the enzyme in bone marrow cellular populations. However, G-6-PDH activity in erythrocytes exceeded the control means in all the experimental terms. The calculation of the local redistribution coefficient (l(G-6-FDH-i)) showed that these changes are mainly determined by the increase of the activity of the isoform G-6-PDH-3. Vitamin D3 administration to rats generated a correction of G-6-PDH activity in all studied cellular populations. Meanwhile, the MMF profiles were characterized by multidirectional rearrangements in the bone marrow erythroid and granulocyte-monocyte cells and in erythrocytes. The specificity of changes in the distribution of the MMF of G-6-PDH in the three studied cellular populations depends on the particularities of their energetic metabolism at irradiation conditions and on the modifying action of the natural adaptogen 1,25-dihydroxicholecalciferol.  相似文献   

2.
Activity levels of 7-ethoxycoumarin O-deethylase (ED), aminopyrine N-demethylase (APD), p-nitroanisoleO-demethylase (p-NAD) and glucose-6-phosphate dehydrogenase (G-6-PDH) were determined in incubation mixtures for the liver-microsomal assay (LMA) at time 0 and after 1 and 2 h incubation under conditions for mutagenic assay. The experiments were performed with S9 liver fractions from mice (induced with Na-phenobarbital and β-naphthoflavone) and rats (induced with Aroclor 1254) with and without G-6-PDH in the incubation mixtures.

In the absence of G-6-PDH the activities were significantly lower at time 0 in the mouse. The pattern of stability, however, was similar for the activities, with an increase of stability after 1 and 2 h of pre-incubation (an exception for p-NAD).

Only ED activity showed a similar behaviour in the rat. No differences were present for APD and p-NAD activities at time 0 in the rat, but the enzyme stabilities were significantly decreased after 2 h of incubation (about 15% and 10% for APD and p-NAD respectively) in the absence of G-6-PDH.

At time 0, the amounts of G-6-PDH differed between mouse and rat fractions; however, during the incubations for LMA they decreased by about 57% and 53% for the two species, respectively. In addition to the above biochemical results, the presence of exogenous G-6-PDH in the incubations for the mutagenic assay, significantly increased the mitotic gene conversion and mitotic crossing-over of dimethylnitrosamine (DMN) and AR2MNFN (a nitroimidazo[2,1-b]thiazole) in the D7 strain of Saccharomyces cerevisiae.  相似文献   


3.
Phospholipase activity of mitochondria of gamma-irradiated rat liver was inhibited at different times after irradiation with a dose of 10 Gy. A maximum radiation effect was registered 3-6 h following irradiation (65% of the control); the effect somewhat decreased (85% of the control) by the end of the first 24 h after exposure.  相似文献   

4.
The effects of aluminium (Al) ions on the metabolism of root apical meristems were examined in 4-day-old seedlings of two cereals which differed in their tolerance to Al: wheat cv. Grana (Al-sensitive) and rye cv. Dakowskie Nowe (Al tolerant). During a 24 h incubation period in nutrient solutions containing 0.15 mM and 1.0 mM of Al for wheat and rye, respectively, the activity of first two enzymes in the pentose phosphate pathway (G-6-PDH and 6-PGDH) decreased in the sensitive cultivar. In the tolerant cultivar activities of these enzymes increased initially, then decreased slightly, and were at control levels after 24 h. In the Al-sensitive wheat cultivar a 50% reduction in the activity of 6-phosphogluconate dehydrogenase was observed in the presence of Al. Changes in enzyme activity were accompanied by changes in levels of G-6-P- the initial substrate in the pentose phosphate pathway. When wheat was exposed for 16 h to a nutrient solution containing aluminium, a 90% reduction in G-6-P concentration was observed. In the Al-tolerant rye cultivar, an increase and subsequently a slight decrease in G-6-P concentration was detected, and after 16 h of Al-stress the concentration of this substrate was still higher than in control plants. This dramatic Al-induced decrease in G-6-P concentration in the Al-sensitive wheat cultivar was associated with a decrease in both the concentration of glucose in the root tips as well as the activity of hexokinase, an enzyme which is responsible for phosphorylation of glucose to G-6-P. However, in the Al-tolerant rye cultivar, the activity of this enzyme remained at the level of control plants during Al-treatment, and the decrease in the concentration of glucose occurred at a much slower rate than in wheat. These results suggest that aluminium ions change cellular metabolism of both wheat and rye root tips. In the Al-sensitive wheat cultivar, irreversible disturbances induced by low doses of Al in the nutrient solution appear very quickly, whereas in the Al-tolerant rye cultivar, cellular metabolism, even under severe stress conditions, is maintained for a long time at a level which allows for root elongation to continue.Abbreviations G-6-PDH glucose-6-phosphate dehydrogenase - 6-PGDH 6-phosphogluconate dehydrogenase - G-6-P glucose-6-phosphate - TEA triethanolamine  相似文献   

5.
Treatment of bovine pulmonary arterial endothelial cells in culture with the phase II enzyme inducer sulforaphane (5μM, 24h; sulf-treated) increased cell-lysate NAD(P)H:quinone oxidoreductase (NQO1) activity by 5.7 ± 0.6 (mean ± SEM)-fold, but intact-cell NQO1 activity by only 2.8 ± 0.1-fold compared to control cells. To evaluate the hypothesis that the threshold for sulforaphane-induced intact-cell NQO1 activity reflects a limitation in the capacity to supply NADPH at a sufficient rate to drive all the induced NQO1 to its maximum activity, total KOH-extractable pyridine nucleotides were measured in cells treated with duroquinone to stimulate maximal NQO1 activity. NQO1 activation increased NADP(+) in control and sulf-treated cells, with the effect more pronounced in the sulf-treated cells, in which the NADPH was also decreased. Glucose-6-phosphate dehydrogenase (G-6-PDH) inhibition partially blocked NQO1 activity in control and sulf-treated cells, but G-6-PDH overexpression via transient transfection with the human cDNA alleviated neither the restriction on intact sulf-treated cell NQO1 activity nor the impact on the NADPH/NADP(+) ratios. Intracellular ATP levels were not affected by NQO1 activation in control or sulf-treated cells. An increased dependence on extracellular glucose and a rightward shift in the K(m) for extracellular glucose were observed in NQO1-stimulated sulf-treated vs control cells. The data suggest that glucose transport in the sulf-treated cells may be insufficient to support the increased metabolic demand for pentose phosphate pathway-generated NADPH as an explanation for the NQO1 threshold.  相似文献   

6.
Effects of X-ray induced oxidative stress in mouse lungs were studied in terms of DNA damage and expression of antioxidant defense and DNA repair genes. Lung samples were collected immediately after, and 3, 6, and 22 h after irradiation with 1, 3, 10 or 30 Gy X-rays of the thorax. The levels of strand breaks (SB), formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (ENDOIII) sensitive sites, detected by the comet assay, were increased dose-dependently immediately after irradiation, whereas 8-oxo-7,8-dihydro-2'-deoxyguanosine analyzed by HPLC-EC was unaltered, possibly due to a relatively high background level (2.5/10(6) dG in control tissue). Complete repair of SB was observed 3 h after irradiation, whereas the period required for repair of ENDOIII and FPG sensitive sites was longer. Determined by RT-PCR, the mRNA expression of heme oxygenase-1 (HO-1) was increased 40-fold 6 h after irradiation, whereas the expression of 8-oxoguanine glycosylase (OGG1) and ERCC1 were increased 2.5-fold 6 h after exposure, with saturation at the lowest dose. In conclusion, this study shows the feasibility of partial-body X-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, and expression of relevant DNA repair and antioxidant defense genes.  相似文献   

7.
Glucose-6-phosphate dehydrogenase (G-6-PDH) deficiency is the most common known human genetic polymorphism. This study tested the hypothesis that G-6-PDH deficiency worsens sepsis-induced erythrocyte dysfunction. Sepsis (24 h) was induced by cecal ligation and puncture in wild-type (WT) and G-6-PDH-deficient (G-6-PDH activity 15% of WT) mice. Erythrocyte responses were tested in whole blood as well as in subpopulations of circulating erythrocytes. Whereas erythrocyte deformability was similar in unchallenged deficient and WT animals, sepsis decreased erythrocyte deformability that was more pronounced in deficient than WT animals. Sepsis also resulted in anemia and hemolysis in deficient compared with WT animals. Mean corpuscular hemoglobin content and erythrocyte deformability decreased in younger erythrocyte subpopulations from septic deficient compared with WT animals. Sepsis decreased the reduced-to-oxidized glutathione ratio in erythrocytes from both deficient and WT animals; however, plasma glutathione increased more in deficient than in WT animals. Erythrocyte content of band 3 associated with the cytoskeleton was elevated in deficient compared with WT erythrocytes. The antioxidant N-acetyl-l-cysteine in vivo alleviated the sepsis-induced decrease in erythrocyte deformability in deficient animals compared with sham-operated control animals. This study demonstrates that a mild degree of G-6-PDH deficiency (comparable to the human class III G-6-PDH deficiencies) worsens erythrocyte dysfunction during sepsis. Increased erythrocyte rigidity and tendency for hemolysis together with alterations in band 3-spectrin interactions may contribute to the immunomodulatory effects of G-6-PDH deficiency observed after major trauma and infections in humans.  相似文献   

8.
A model system has been used to measure glucose-6-phosphatedehydrogenase (G-6-PDH) activity when the water contents ofthe reactants are comparable to the water contents of dry restingseeds. The activity of G-6-PDH is reduced by 102–103 whenthe water content is limited to between 1.5 and 25 per cent.G-6-PDH activity is affected by temperature and by the proteincontent of the model system. The glucose 6-phosphate (7.03 nmolg–1 embryo) and the NADP+ (25.0 nmol g–1 embryo)contents of barley embryos were measured. Using these measurements,together with the measurements in the model system of G-6-PDHactivity at low water concentrations, an estimate is made ofthe G-6-PDH activity in resting barley embryo. A cor-relationbetween estimated G-6-PDH activity at different water contentsand the periods for which seeds remain viable is indicated.The limitations of the model system are discussed.  相似文献   

9.
Liu Y  Wu R  Wan Q  Xie G  Bi Y 《Plant & cell physiology》2007,48(3):511-522
The pivotal role of glucose-6-phosphate dehydrogenase (G-6-PDH)-mediated nitric oxide (NO) production in the tolerance to oxidative stress induced by 100 mM NaCl in red kidney bean (Phaseolus vulgaris) roots was investigated. The results show that the G-6-PDH activity was enhanced rapidly in the presence of NaCl and reached a maximum at 100 mM. Western blot analysis indicated that the increase of G-6-PDH activity in the red kidney bean roots under 100 mM NaCl was mainly due to the increased content of the G-6-PDH protein. NO production and nitrate reductase (NR) activity were also induced by 100 mM NaCl. The NO production was reduced by NaN(3) (an NR inhibitor), but not affected by N(omega)-nitro-L-arginine (L-NNA) (an NOS inhibitor). Application of 2.5 mM Na(3)PO(4), an inhibitor of G-6-PDH, blocked the increase of G-6-PDH and NR activity, as well as NO production in red kidney bean roots under 100 mM NaCl. The activities of antioxidant enzymes in red kidney bean roots increased in the presence of 100 mM NaCl or sodium nitroprusside (SNP), an NO donor. The increased activities of all antioxidant enzymes tested at 100 mM NaCl were completely inhibited by 2.5 mM Na(3)PO(4). Based on these results, we conclude that G-6-PDH plays a pivotal role in NR-dependent NO production, and in establishing tolerance of red kidney bean roots to salt stress.  相似文献   

10.
The effects of 5 alpha-dihydrotestosterone (DHT) and thyroxine (T4) on glucose-6-phosphate dehydrogenase (G-6-PDH) activity in mouse submandibular gland were investigated histochemically. A strong positive histochemical reaction for G-6-PDH was observed in the excretory ducts of untreated male and female mice, with a slight reaction in the basal portion of the convoluted tubules (striated ducts) of males. Administration of DHT to female mice increased G-6-PDH activity specifically in the convoluted tubules. T4 increased the enzyme activity in the tubules more than DHT. The induction of G-6-PDH activity by T4 in adrenalectomized mice suggests that T4 has a direct effect on the submandibular gland.  相似文献   

11.
Effect of prefeeding dehydrated amaranth (A. gangeticus) leaves at 10 and 20% levels on a chemical toxicant, dimethylhydrazine (DMH)-induced free radical stress in rat liver was evaluated. DMH-induced rise in hepatic malondialdehyde (MDA), was diminished by AL. AL intake resulted in a significant increase in hepatic glutathione (GSH). The feeding of AL at 10% level increased the hepatic glucose-6-phosphate dehydrogenase (G-6-PDH) activity, while that at 20% level increased the hepatic glutathione reductase (GSSGR) as well, in addition to G-6-PDH. Amaranth leaves at 10 and 20% levels of feeding diminished the hepatic superoxide dismutase and glutathione peroxidase (GSH-Px) activities. DMH influenced adversely the hepatic antioxidant enzyme activities. Simultaneous administration of DMH and feeding of AL enhanced the DMH-induced decrease in hepatic GSH-Px. DMH enhanced formation of micronuclei was reverted significantly by AL intake. Hence, it was concluded that the consumption of AL at 20% level reduced DMH-induced impaired antioxidant status in rat liver.  相似文献   

12.
Riis B  Risom L  Loft S  Poulsen HE 《DNA Repair》2002,1(5):419-424
Rapidly proliferating tissue with synthesis of a large number of cellular macromolecules including DNA, may require enhanced DNA repair capacity in order to avoid fixation of promutagenic DNA lesions to mutations. This hypothesis was addressed by assessing the incision activity and the mRNA level of the DNA repair protein rat 8-oxodeoxyguanosine glycosylase (rOGG1) as well as the level of the oxidative stress biomarker 8-oxodeoxyguanosine (8-oxodG) in rat liver tissue before and after partial hepatectomy. A five-fold increase in rOGG1 expression was found at 24h after PHx relative to the control levels. At 48h the rOGG1 mRNA levels were reduced to three-times the control values. The corresponding incision activities of rOGG1 in the crude tissue extract as measured by the incision assay were slightly increased both at 24 and 48h after partial hepatectomy although the changes failed to be statistically significant (P=0.07 and 0.06, respectively). The levels of 8-oxodG were unaltered at 24h but increased to 1.8 times the control values at 48h after partial hepatectomy. The study showed that rapid proliferating liver tissue in vivo had an increased expression of the DNA repair protein rOGG1, without significantly increased incision activity on a 8-oxodG-containing substrate and with unchanged levels of 8-oxodG/10(6) dGuo after 24h of regeneration. At 48h the rOGG1 expression was decreased, and the levels of 8-oxodG/10(6) dGuo increased but still significant changes in the incision activity could not be detected. Thus, we can conclude that the rOGG1 expression is temporarily up-regulated by the proliferating events elicited by partial hepatectomy.  相似文献   

13.
The cytochemical technique was used to measure the activity of succinate dehydrogenase (SDH), lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G-6-PDH) of peripheral blood lymphocytes of mice and rats given intraperitoneal injections of an endogenous immunostimulant tuftcin (Tre-Lys-Pro-Arg) in a dose of 0.3 mg/kg. A significant decrease of SDH activity was observed both in mice and rats 4 and 6 hours following injection, respectively. In mice, that activity returned to normal in 12, while in rats in 24 hours. An opposite action was produced by tuftcin on G-6-PDH, causing the maximum elevation of the enzyme activity in rat lymphocytes 6 hours after peptide administration. The decrease to the initial level was observed in 24 hours. Tuftcin did not affect the activity of LDH. The data obtained indicate that the immunological effect of tuftcin is coupled with the changes in the activity of Krebs cycle enzymes (SDH) and pentose phosphate cycle enzymes (G-6-PDH).  相似文献   

14.
&#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2013,37(6):1073-1078
采用毒性试验方法,研究了安全浓度(1.288 mg/L)条件下亚砷酸钠(NaAsO2)对兰州鲇(Silurus lanzhouensis)脑、鳃、肝脏、肌肉4种组织中6-磷酸葡萄糖脱氢酶(G-6-PDH)和乳酸脱氢酶(LDH)活性,以及RNA和蛋白质含量的影响。结果表明,染毒21d时,As(Ⅲ)可显著降低4种组织中G-6-PDH和LDH活性、RNA和蛋白质含量(P0.05)。撤毒后21d,除脑和肝组织中蛋白质含量未恢复到对照组水平(P0.05),肝脏中G-6-PDH活性超过了对照组水平(P0.05)外,其余各组织中G-6-PDH和LDH活性、RNA和蛋白质含量均可恢复到对照组水平(P0.05)。以上结果表明,As(Ⅲ)对兰州鲇组织中代谢酶活性具有明显的抑制作用,可致组织细胞RNA损伤和可溶性蛋白质减少,但这种影响是可逆的,撤毒后一定时间内可恢复到正常水平。    相似文献   

15.
为了探讨重离子辐照对微藻的生物学效应,实验研究了不同剂量碳离子辐照(10~80 Gy)对四尾栅藻(Scenedesmus quadricauda)光合色素及抗氧化活性的影响,分别测定了辐照后短期内其叶绿素a(Chl a)、叶绿素b(Chl b)和类胡萝卜素含量、脂质过氧化物丙二醛(MDA)含量及超氧化物歧化酶(SOD)活性。结果显示:(1)较低剂量(10~20 Gy)辐照后,光合色素含量变化较小或无显著变化,中等剂量(40~60 Gy)辐照后,光合色素含量显著升高,之后又回落,恢复至正常水平,高剂量(80 Gy)辐照后,光合色素含量明显降低,不能恢复正常;(2)低剂量(10 Gy)辐照后,丙二醛(MDA)含量显著上升,8 h后出现回落,到24~48 h时,回升至正常水平,较低剂量(20 Gy)辐照后,MDA含量瞬时有所下降,到24~48 h时,回升至正常水平,中等至高剂量(40~80 Gy)辐照后,MDA含量降低,24~48 h时显著升高,不能恢复正常;(3)低剂量(10 Gy)辐照后,超氧化物歧化酶(SOD)活性显著上升,8 h后出现回落,恢复正常,中等剂量(20~60 Gy)辐照后,SOD活性显著上升,到48 h时回落至正常水平,高剂量(80 Gy)辐照后,SOD活性无明显上升,到48 h时,活性明显降低,不能恢复正常。  相似文献   

16.
The enzymes delta5-3beta-hydroxysteroid dehydrogenase delta5-3beta-HSD) and glucose-6-phosphate dehydrogenase (G-6-PDH) were demonstrated histochemically in the adrenal cortex of female rat. The activities of these enzymes were increased significantly in the alloxan-treated rats kept in LD (light: darkness) cycles of 10:14 h. Continuous light exposure to diabetic animals appeared to decrease delta5-3beta-HSD and g-6-PDH in comparison to the diabetic rats kept in 10 h illumination. The evidence indicates that suppression of adrenal steroidogenesis in diabetic rats after exposure to continuous light is due to the alteration of pentose phosphate pathway.  相似文献   

17.
Summary The effects of 5-dihydrotestosterone (DHT) and thyroxine (T4) on glucose-6-phosphate dehydrogenase (G-6-PDH) activity in mouse submandibular gland were investigated histochemically. A strong positive histochemical reaction for G-6-PDH was observed in the excretory ducts of untreated male and female mice, with a slight reaction in the basal portion of the convoluted tubules (striated ducts) of males. Administraition of DHT to female mice increased G-6-PDH activity specifically in the convoluted tubules. T4 increased the enzyme activity in the tubules more than DHT. The induction of G-6-PDH activity by T4 in adrenalectomized mice suggests that T4 has a direct effect on the submandibular gland.  相似文献   

18.
Histochemical studies were carried out on some of the glycolytic enzymes viz. phosphorylase, aldose, alpha-glycerophosphate dehydrogenase (alpha-GPDH) and lactic dehydrogenase (LDH) and a key enzyme of the pentose phosphatase cycle, glucose-6-phosphate dehydrogenase (G-6-PDH), in the hepatopancreas of Scylla serrata (Forskal). 1. Weak activities of phosphorylase and aldolase and strong-activities of alpha-GPDH and LDH were noticed mainly in the brush border of the tubules and R-cell cytoplasm. A trace activity of G-6-PDH was noticed in the brush border. 2. Bilateral eyestalk removal results in inhibition of both phosphorylase and aldolase. However, enhanced activities of alpha-GPDH and LDH were noticeable 4 h after the operation. The G-6-PDH activity remained unaltered till 24 h. 3. Injection of eyestalk extract into both intact and destalked crabs activated all the enzymes.  相似文献   

19.
We examined the relationship between the induction of an increase in the level of glutathione and the elevation of natural killer (NK) activity in mouse splenocytes by a low dose of gamma rays. The glutathione levels in mouse splenocytes increased significantly between 2 h and 6 h after whole-body gamma irradiation at 0.5 Gy, peaked at 4 h, and then decreased almost to the level before irradiation by 12 h postirradiation. A significant enhancement of NK activity was found in the splenocytes obtained from whole-body-irradiated mice between 4 and 6 h postirradiation. Reduced glutathione (GSH) added exogenously to splenocytes obtained from normal mice enhanced both the total cellular glutathione content and the NK activity in a dose-dependent manner. Other precursors of de novo GSH synthesis, such as cysteine, N-acetylcysteine and oxidized glutathione, also increased the activity. These enhancements were completely blocked by buthionine sulfoximine, an inhibitor of de novo GSH synthesis. We conclude that the induction of endogenous glutathione in living cells immediately after low-dose gamma irradiation is at least partially responsible for the appearance of enhanced NK activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号