共查询到20条相似文献,搜索用时 0 毫秒
1.
Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis 总被引:5,自引:0,他引:5
Miyatsuka T Kaneto H Kajimoto Y Hirota S Arakawa Y Fujitani Y Umayahara Y Watada H Yamasaki Y Magnuson MA Miyazaki J Hori M 《Biochemical and biophysical research communications》2003,310(3):1017-1025
To date, the potency of pancreatic and duodenal homeobox gene 1 (PDX-1) in inducing differentiation into insulin-producing cells has been demonstrated in some cells and tissues. In order to carry out efficient screening of somatic tissues and cells that can transdifferentiate into beta-cell-like cells in response to PDX-1, we generated CAG-CAT-PDX1 transgenic mice carrying a transgene cassette composed of the chicken beta-actin gene (CAG) promoter and a floxed stuffer DNA sequence (CAT) linked to PDX-1 cDNA. When the mice were crossed with Alb-Cre mice, which express the Cre recombinase driven by the rat albumin gene promoter, PDX-1 was expressed in more than 50% of hepatocytes and cholangiocytes. The PDX-1 (+) livers expressed a variety of endocrine hormone genes such as insulin, glucagon, somatostatin, and pancreatic polypeptide. In addition, they expressed exocrine genes such as elastase-1 and chymotrypsinogen 1B. However, the mice exhibited marked jaundice due to conjugated hyperbilirubinemia, and the liver tissue displayed abnormal lobe structures and multiple cystic lesions. Thus, the in vivo ectopic expression of PDX-1 in albumin-producing cells was able to initiate but not complete the differentiation of liver cells into pancreatic cells. The conditional PDX-1 transgenic mouse system developed in this study appeared to be useful for efficient screening of PDX-1 responsive somatic tissues and cells. 相似文献
2.
Euskirchen P Skaftnesmo KO Huszthy PC Brekkå N Bjerkvig R Jacobs AH Miletic H 《Experimental cell research》2011,(20):2864-2873
The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers. 相似文献
3.
Kolbus D Ljungcrantz I Söderberg I Alm R Björkbacka H Nilsson J Fredrikson GN 《PloS one》2012,7(3):e33932
Antigen presenting cells (APC) have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+) T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1)-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+) T cell population. We have recently reported an increased activation of CD8(+) T cells in hypercholesterolemic Apoe(-/-) mice. Therefore, this study included TAP1-deficient Apoe(-/-) mice (Apoe(-/-)Tap1(-/-)) to test the atherogenicity of CD8(+) T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+) T cell numbers were low in Apoe(-/-)Tap1(-/-) mice in comparison to Apoe(-/-) mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-)Tap1(-/-) and Apoe(-/-) mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+) T cells in Apoe(-/-)Tap1(-/-) compared to Apoe(-/-) mice. The CD3(+)CD4(+) T cell fraction was increased in Apoe(-/-)Tap1(-/-) mice, suggesting a compensation for the decreased CD8(+) T cell population. Interestingly, the fraction of CD8(+) effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-)Tap1(-/-) mice develop atherosclerosis equal to Apoe(-/-) mice, indicating a minor role for CD8(+) T cells and TAP1-dependent antigen presentation in the disease process. 相似文献
4.
Connexin mutations in skin disease and hearing loss 总被引:8,自引:0,他引:8
5.
Millimeter wave treatment (MWT) is based on those biological effects that develop following skin exposure to low power electromagnetic waves. This method of treatment is in wide clinical use in several Eastern European countries for treatment of a variety of conditions, including pain syndromes. However, most treatment modes of MWT were developed empirically, and certain indications and contraindications for the use of MWT remain to be established. In our previous blind experiments we have shown that the hypoalgesic effect of MWT may be quantitatively evaluated, and most probably mediated by the neural system in general, and the system of endogenous opioids in particular. Taking in consideration a well-known ability of opioids to cause gastrointestinal disturbances, which could limit clinical application of MWT, the main aim of the present study was to investigate whether a single MWT, that can produce opioid-related hypoalgesia, may also retard gut transit and colorectal passage in mice. The charcoal meal test was used to quantitatively evaluate upper gastrointestinal transit, and the glass bead test was employed to examine colonic propulsion in mice. MWT was applied to the nose area of mice. The MWT characteristics were: frequency = 61.22 GHz; incident power density = 15 mW/cm(2); and duration = 15 min. The results obtained have shown that MWT does not significantly change small intestinal or colonic transit in mice, and thus suppression of gastrointestinal motility should not be a setback in the clinical use of MWT. 相似文献
6.
Lea R. Chioca Valquíria D.C. Antunes Marcelo M. Ferro Estela M. Losso Roberto Andreatini 《Life sciences》2013,92(20-21):971-975
AimThe inhalation of Lavandula angustifolia (lavender) essential oil has anxiolytic-like effects in animal models and humans, but its mechanism of action is still not fully understood. The inhalation of essential oils can induce anxiolytic effects through the central nervous system (e.g., lung absorption and bloodstream transport) or stimulation of the olfactory system and secondary activation of brain regions. Thus, the main objective of the present study was to evaluate whether the perception of lavender essential oil aroma, when inhaled, is necessary to obtain its anxiolytic-like effects in mice tested in the marble-burying test.Main methodsAnosmia was induced by irrigating the nasal cavity with zinc gluconate + zinc acetate so that the mice could not detect odors in the olfactory discrimination test. The marble-burying test was used to evaluate the anxiolytic-like effects of inhaled lavender essential oil.Key findingsAnosmia did not interfere with the anxiolytic-like effect of lavender essential oil inhalation in the marble-burying test at concentrations of 2.5% (number of marbles buried: vehicle, 4.7 ± 1.0; zinc, 6.2 ± 2.2; p > 0.10) and 5% (number of marbles buried: vehicle, 3.4 ± 0.8; zinc, 4.3 ± 0.9; p > 0.10). Lavender essential oil at a concentration of 0.5% was ineffective.SignificanceThese results suggest that olfactory system activation is unlikely to participate in the anxiolytic-like effect of lavender essential oil inhalation. 相似文献
7.
Background
Pregnancy-associated plasma protein A2 (PAPPA2) is an insulin-like growth factor binding protein (IGFBP) protease expressed in the placenta and upregulated in pregnancies complicated by pre-eclampsia. The mechanism linking PAPPA2 expression and pre-eclampsia and the consequences of altered PAPPA2 expression remain unknown. We previously identified PAPPA2 as a candidate gene for a quantitative trait locus (QTL) affecting growth in mice and in the present study examined whether this QTL affects placental PAPPA2 expression and, in turn, placental or embryonic growth. 相似文献8.
Mitochondria provide cellular energy supply via respiration and are the major sites for the generation of reactive oxygen species (ROS). Mitochondria also play a fundamental role in apoptosis. Heme is a key factor in mitochondrial function. Defective heme synthesis or altered heme metabolism is associated with numerous diseases. Here we investigated the molecular mechanism by which heme promotes HeLa cell growth and survival. We found that heme deficiency-induced apoptosis involves the release of cytochrome c and the activation of caspase 3. However, heme deficiency-induced apoptosis appears to occur by a unique mechanism distinct from those known to mediate mitochondrial-dependent apoptosis. Specifically, our data show that heme deficiency causes apoptosis in a pathway that is independent of ROS generation and the collapse of mitochondrial membrane potential. These results provide insights into how defective heme synthesis or altered heme metabolism causes diseases and how heme may control cell growth and cell death. 相似文献
9.
Zabolotny JM Haj FG Kim YB Kim HJ Shulman GI Kim JK Neel BG Kahn BB 《The Journal of biological chemistry》2004,279(23):24844-24851
Previous studies implicate protein-tyrosine phosphatase 1B (PTP1B) and leukocyte antigen-related phosphatase (LAR) as negative regulators of insulin signaling. The expression and/or activity of PTP1B and LAR are increased in muscle of insulin-resistant rodents and humans. Overexpression of LAR selectively in muscle of transgenic mice causes whole body insulin resistance. To determine whether overexpression of PTP1B also causes insulin resistance, we generated transgenic mice overexpressing human PTP1B selectively in muscle at levels similar to those observed in insulin-resistant humans. Insulin-stimulated insulin receptor (IR) tyrosyl phosphorylation and phosphatidylinositol 3'-kinase activity were impaired by 35% and 40-60% in muscle of PTP1B-overexpressing mice compared with controls. Insulin stimulation of protein kinase C (PKC)lambda/zeta activity, which is required for glucose transport, was impaired in muscle of PTP1B-overexpressing mice compared with controls, showing that PTP1B overexpression impairs activation of these PKC isoforms. Furthermore, hyperinsulinemic-euglycemic clamp studies revealed that whole body glucose disposal and muscle glucose uptake were decreased by 40-50% in PTP1B-overexpressing mice. Overexpression of PTP1B or LAR alone in muscle caused similar impairments in insulin action; however, compound overexpression achieved by crossing PTP1B- and LAR-overexpressing mice was not additive. Antibodies against specific IR phosphotyrosines indicated overlapping sites of action of PTP1B and LAR. Thus, overexpression of PTP1B in vivo impairs insulin sensitivity, suggesting that overexpression of PTP1B in muscle of obese humans and rodents may contribute to their insulin resistance. Lack of additive impairment of insulin signaling by PTP1B and LAR suggests that these PTPs have overlapping actions in causing insulin resistance in vivo. 相似文献
10.
TRPML3, a member of the transient receptor potential (TRP) family, is an inwardly rectifying, non-selective Ca2+-permeable cation channel that is regulated by extracytosolic Na+ and H+ and can be activated by a variety of small molecules. The severe auditory and vestibular phenotype of the TRPML3(A419P) varitint-waddler mutation made this protein particularly interesting for inner ear biology. To elucidate the physiological role of murine TRPML3, we conditionally inactivated Trpml3 in mice. Surprisingly, lack of functional TRPML3 did not lead to circling behavior, balance impairment or hearing loss. 相似文献
11.
Laurine Buscara Fatemeh Montazer-Torbati Sead Chadi Aurélie Auguste Johann Laubier Anne-Amandine Chassot Lauriane Renault Bruno Passet José Costa Maëlle Pannetier Marthe Vilotte Marie-Christine Chaboissier Jean-Luc Vilotte Eric Pailhoux Fabienne Le Provost 《Transgenic research》2009,18(4):649-654
RSPO1 is a newly discovered gene involved in sex differentiation. Two goat BAC clones encompassing the RSPO1 gene (gRSPO1) were injected into mouse oocytes and several transgenic lines derived. Both clones induced gRSPO1 over-expression in various tissues, including male and female gonads, with no obvious phenotype and normal sex-ratios. Introgression
of the gRSPO1 transgene into a mouse RSPO1 knockout genotype resulted in the rescue of the fertility and the disappearance of the masculinized gonadic features of the
females, demonstrating the functionality of the goat protein in a mouse context. On the contrary, over-expression of gRSPO1 within a mSRY or a gSRY-XX genotypes did not interfere with the SRY-induced male phenotype.
Laurine Buscara and Fatemeh Montazer-Torbati contributed equally to this work. 相似文献
12.
Reovirus delays diabetes onset but does not prevent insulitis in nonobese diabetic mice 总被引:1,自引:0,他引:1
下载免费PDF全文

Wetzel JD Barton ES Chappell JD Baer GS Mochow-Grundy M Rodgers SE Shyr Y Powers AC Thomas JW Dermody TS 《Journal of virology》2006,80(6):3078-3082
Mice infected with reovirus develop abnormalities in glucose homeostasis. Reovirus strain type 3 Abney (T3A) was capable of systemic infection of nonobese diabetic (NOD) mice, an experimental model of autoimmune diabetes. Reovirus antigen was detected in pancreatic islets of T3A-infected mice, and primary cultures of pancreatic islets from NOD mice supported T3A growth. Significantly fewer T3A-infected animals compared to uninfected controls developed diabetes. However, despite the alteration in diabetes penetrance, insulitis was evident in T3A-infected mice. These results suggest that viral infection of NOD mice alters autoimmune responses to beta-cell antigens and thereby delays development of diabetes. 相似文献
13.
Pancreatic polypeptide was infused into obese-hyperglycemic (ob/ob) mice and lean littermates to determine its effect on weight gain. Obese mice continuously infused with 30, 60, or 100 μg/day for 7 days developed both diarrhea and weight loss in a dose dependent fashion. Lean littermates infused with 100 μg/day developed neither diarrhea nor weight loss. Light microscopic study of ileum and colon revealed no abnormalities. These studies indicate that the effects of pancreatic polypeptide are in part genetically determined since the obese and non-obese mice differ at only one gene locus. 相似文献
14.
The involvement of the hippocampus in pain has been demonstrated but key players, i.e. the major brain receptors have not been shown to be modulated by pain. It was therefore the aim of the study to show the concerted action and pattern of brain receptor complex levels in a non-invasive model of moderate pain. C57BL/6J mice were divided into four groups of 14 animals each: trained injected, trained non-injected, yoked injected and yoked non-injected. Animals were tested in the open field and the elevated plus maze for behavioural evaluation and cognitive functions were tested using the Morris Water Maze. Hippocampi were taken 6 h following sacrification. Membrane proteins were prepared by ultracentrifugation and run on blue native gels to keep the native state, blotted to membranes and western blotting was carried out using the primary antibodies against serotonin receptor 5HT1A, muscarinic acetylcholine receptor M1 (mAChR-M1), nicotinic acetylcholine receptor alpha7 (nAChR-alpha7), glutamate (AMPA) receptor (GluR1) and neurokinin receptor 1 (NK-1). There was no difference between performance in behaviour or in the MWM between groups. Brain receptor level changes involved all receptors given above. Pain affected mAChR-M1, GluR1 and NK-1 complex levels when yoked-injected were compared with yoked non-injected animals. Memory mechanisms affected mAChR-M1 complex levels when trained non-injected animals were compared with yoked non-injected controls. Taken together, the neurochemical basis for testing receptor agonists/antagonists on the role of pain and the hippocampus was generated that may be useful for interpretations of the role of this complex area in moderate pain. 相似文献
15.
16.
Myers M Tripurani SK Middlebrook B Economides AN Canalis E Pangas SA 《Biology of reproduction》2011,85(6):1175-1182
The transforming growth factor beta (TGFB) protein family is renowned for its diverse roles in developmental biology including reproduction. Gremlin is a member of the differential screening-selected gene aberrative in neuroblastoma (DAN)/cerberus family of bone morphogenetic protein (BMP) antagonists. Recent studies on gremlin focus on its involvement in embryonic skeletal, lung, and kidney development. To define the role of gremlin (Grem1) in female reproduction, we analyzed postnatal folliculogenesis using global and conditional knockout (cKO) mice for gremlin. Grem1(-/-) mice die within 48 h after birth, and ovaries collected from neonatal Grem1(-/-) mice demonstrated reduced oocyte numbers and delayed primordial follicle development. Transplanting Grem1(-/-) neonatal ovaries showed that folliculogenesis proceeded to large antral follicle stage, but Grem1(-/-) ovaries contained corpora lutea-like structures not found in control-transplanted ovaries. However, Grem1 cKO mice had comparable fertility to control mice. These data suggest that gremlin plays a previously uncharacterized role in the regulation of oocyte numbers and the timing of primordial follicle development, but either it is not required for later folliculogenesis or its loss is possibly compensated by other BMP antagonists. 相似文献
17.
C J Vandenberg E C Josefsson K J Campbell C James K E Lawlor B T Kile S Cory 《Cell death and differentiation》2014,21(5):676-684
Bax and Bak are critical effectors of apoptosis. Although both are widely expressed and usually functionally redundant, recent studies suggest that Bak has particular importance in certain cell types. Genetic and biochemical studies indicate that Bak activation is prevented primarily by Mcl-1 and Bcl-xL, whereas Bax is held in check by all pro-survival Bcl-2 homologues, including Bcl-2 itself. In this study, we have investigated whether loss of Bak or elevated Mcl-1 modulates haemopoietic abnormalities provoked by overexpression of Bcl-2. The Mcl-1 transgene had little impact, probably because the expression level was insufficient to effectively reduce Bak activation. However, loss of Bak enhanced lymphocytosis in vavP-BCL-2 transgenic mice and increased resistance of their thymocytes to some cytotoxic agents, implying that Bak-specific signals can be triggered in certain lymphoid populations. Nevertheless, lack of Bak had no significant impact on thymic abnormalities in vavP-BCL-2tg mice, which kinetic analysis suggested was due to accumulation of self-reactive thymocytes that resist deletion. Intriguingly, although Bak−/− mice have elevated platelet counts, Bak−/−vavP-BCL-2 mice, like vavP-BCL-2 littermates, were thrombocytopaenic. To clarify why, the vavP-BCL-2 platelet phenotype was scrutinised more closely. Platelet life span was found to be elevated in vavP-BCL-2 mice, which should have provoked thrombocytosis, as in Bak−/− mice. Analysis of bone marrow chimaeric mice suggested the low platelet phenotype was due principally to extrinsic factors. Following splenectomy, blood platelets remained lower in vavP-BCL-2 than wild-type mice. However, in Rag1−/−
BCL-2tg mice, platelet levels were normal, implying that elevated lymphocytes are primarily responsible for BCL-2tg-induced thrombocytopaenia. 相似文献
18.
p53 Deficiency rescues neuronal apoptosis but not differentiation in DNA polymerase beta-deficient mice
下载免费PDF全文

Sugo N Niimi N Aratani Y Takiguchi-Hayashi K Koyama H 《Molecular and cellular biology》2004,24(21):9470-9477
In mammalian cells, DNA polymerase beta (Polbeta) functions in base excision repair. We have previously shown that Polbeta-deficient mice exhibit extensive neuronal cell death (apoptosis) in the developing nervous system and that the mice die immediately after birth. Here, we studied potential roles in the phenotype for p53, which has been implicated in DNA damage sensing, cell cycle arrest, and apoptosis. We generated Polbeta(-/-) p53(-/-) double-mutant mice and found that p53 deficiency dramatically rescued neuronal apoptosis associated with Polbeta deficiency, indicating that p53 mediates the apoptotic process in the nervous system. Importantly, proliferation and early differentiation of neuronal progenitors in Polbeta(-/-) p53(-/-) mice appeared normal, but their brains obviously displayed cytoarchitectural abnormalities; moreover, the mice, like Polbeta(-/-) p53(+/+) mice, failed to survive after birth. Thus, we strongly suggest a crucial role for Polbeta in the differentiation of specific neuronal cell types. 相似文献
19.
Murakami K Yokoyama S Murata N Ozawa Y Irie K Shirasawa T Shimizu T 《Biochemical and biophysical research communications》2011,410(1):34-39
tRNA-guanine transglycosylases (TGTs) are responsible for incorporating 7-deazaguanine-modified bases into certain tRNAs in eubacteria (preQ1), eukarya (queuine) and archaea (preQ0). In each kingdom, the specific modified base is different. We have found that the eubacterial and eukaryal TGTs have evolved to be quite specific for their cognate heterocyclic base and that Cys145 (Escherichia coli) is important in recognizing the amino methyl side chain of preQ1 (Chen et al., Nuc. Acids Res. 39 (2011) 2834 [15]). A series of mutants of the E. coli TGT have been constructed to probe the role of three other active site amino acids in the differential recognition of heterocyclic substrates. These mutants have also been used to probe the differential inhibition of E. coli versus human TGTs by pteridines. The results indicate that mutation of these active site amino acids can “open up” the active site, allowing for the binding of competitive pteridine inhibitors. However, even the “best” of these mutants still does not recognize queuine at concentrations up to 50 μM, suggesting that other changes are necessary to adapt the eubacterial TGT to incorporate queuine into RNA. The pteridine inhibition results are consistent with an earlier hypothesis that pteridines may regulate eukaryal TGT activity (Jacobson et al., Nuc. Acids Res. 9 (1981) 2351 [8]). 相似文献
20.
Cobine PA Pierrel F Leary SC Sasarman F Horng YC Shoubridge EA Winge DR 《The Journal of biological chemistry》2006,281(18):12270-12276
Sco1 is a metallochaperone that is required for copper delivery to the Cu(A) site in the CoxII subunit of cytochrome c oxidase. The only known missense mutation in human Sco1, a P174L substitution in the copper-binding domain, is associated with a fatal neonatal hepatopathy; however, the molecular basis for dysfunction of the protein is unknown. Immortalized fibroblasts from a SCO1 patient show a severe deficiency in cytochrome c oxidase activity that was partially rescued by overexpression of P174L Sco1. The mutant protein retained the ability to bind Cu(I) and Cu(II) normally when expressed in bacteria, but Cox17-mediated copper transfer was severely compromised both in vitro and in a yeast cytoplasmic assay. The corresponding P153L substitution in yeast Sco1 was impaired in suppressing the phenotype of cells harboring the weakly functional C57Y allele of Cox17; however, it was functional in sco1delta yeast when the wild-type COX17 gene was present. Pulse-chase labeling of mitochondrial translation products in SCO1 patient fibroblasts showed no change in the rate of CoxII translation, but there was a specific and rapid turnover of CoxII protein in the chase. These data indicate that the P174L mutation attenuates a transient interaction with Cox17 that is necessary for copper transfer. They further suggest that defective Cox17-mediated copper metallation of Sco1, as well as the subsequent failure of Cu(A) site maturation, is the basis for the inefficient assembly of the cytochrome c oxidase complex in SCO1 patients. 相似文献