首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of colonization in nested species subsets   总被引:10,自引:0,他引:10  
Biotic communities inhabiting collections of insular habitat patches often exhibit compositional patterns described as nested subsets. In nested biotas, the assemblages of species in relatively depauperate sites comprise successive subsets of species in relatively richer sites. In theory, nestedness may result from selective extinction, selective colonization, or other mechanisms, such as nested habitats. Allopatric speciation is expected to reduce nestedness. Previous studies, based largely on comparisons between land-bridge and oceanic archipelagos, have emphasized the role of selective extinction. However, colonization could also be important in generating strong patterns of nestedness. We apply a recently published index of nestedness to more than 50 island biogeographic data sets, and examine the roles of colonization, extinction, endemism, and, to a limited extent, habitat variability on the degree on nestedness. Most data sets exhibit a significant degree of nestedness, although there is no general tendency for land-bridge biotas to appear more nested than oceanic ones. Endemic species are shown to generally reduce nestedness. Comparisons between groups of non-endemic species differing in overwater or inter-patch dispersal ability indicate that superior dispersers generally exhibit a greater degree of nestedness than poorer dispersers, a result opposite that expected if colonization were a less predictable process than extinction. These results suggest that frequent colonization is likely to enhance nestedness, thereby increasing the compositional overlap among insular biotas. The prevalence of selective extinction in natural communities remains in question. The importance of colonization in generating and maintaining nested subsets suggests that (1) minimum critical areas will be difficult to determine from patterns of species distributions on islands; (2) multiple conservation sites are likely to be required to preserve communities in subdivided landscapes; and (3) management of dispersal processes may be as important to preserving species and communities as is minimizing extinctions.  相似文献   

2.
General ecological methods and models that require a minimum amount of information yet are still able to inform conservation planning are particularly valuable. Nested subset analysis has been advocated as such a tool for the prediction of extinction-prone species and populations. However, such advocacy has not been without skepticism and debate, and in the majority of published examples assessing extinction vulnerability, actual extinctions are based on assumptions rather than direct evidence. Here, we empirically test the power of nested subset analysis to predict extinction-prone species, using documented Holocene insular mammal extinctions on three island archipelagos off the west coast of North America. We go on to test whether the introduction of invasive mammals promotes nestedness on islands via extinction. While all three archipelagos were significantly nested before and after the extinction events, nested subset analysis largely failed to predict extinction patterns. We also failed to detect any correlations between the degree of nestedness at the genus-level with area, isolation, or species richness and extinction risk. Biogeography tools, such as nested subset analysis, must be critically evaluated before they are prescribed widely for conservation planning. For these island archipelagos, it appears detailed natural history and taxa-specific ecology may prove critical in predicting patterns of extinction risk.  相似文献   

3.
Nested species subsets are a common pattern of community assembly characteristic of many types of fragmented landscapes and insular systems. Here we describe nested subset patterns of amphibian and reptile occupancy on 23 forest islands in north-eastern Bolivia. We used observed occupancy patterns to differentiate five distributional guilds: widespread species, rare species, poor colonizers, area-sensitive species and supertramps. Amphibian occurrences were nested along a forest island isolation gradient, and when species from each of the distribution classes were removed from subsequent analyses of nestedness, we found that dispersal-limited poor colonizers were responsible for the association between nestedness and isolation. Amphibians associated with the grassland matrix at the study site showed a nested pattern linked with area, although this pattern did not scale up to all amphibians and could not be unequivocally attributed to any of the distributional guilds we recognized. There were no strong associations between two biological characteristics, body size and relative abundance in the matrix, and the likelihood of occupancy along either forest island area or isolation gradients. The relative importance of isolation in shaping nested patterns of amphibians on these forest islands may be a result of either (1) the greater range in isolation values included in this study compared with many others; (2) the long time since isolation in this landscape, manifesting a footprint of isolation not apparent in more recently fragmented patches; (3) the relatively homogeneous grassland matrix surrounding forest islands that likely provides little refuge for animals moving among forest islands.  相似文献   

4.
Nested bird and micro-habitat assemblages in a peatland archipelago   总被引:2,自引:0,他引:2  
Biotic assemblages of insular habitats are nested when poor assemblages are subsets of richer ones. Nestedness of species assemblages is frequent and may result from selective extinction or frequent colonization in insular habitats. It may also be created by a nested distribution of habitats among islands or by sampling bias. We sampled 67 isolated peatlands (7–843 ha) in southern Quebec, Canada, to measure nestedness of bird species assemblages among peatlands and assess the habitat nestedness hypothesis. Species and microhabitat assemblages were both strongly nested among peatlands. Whether sites were ranked by species richness, microhabitat richness or peatland area had no effect on nestedness. However, microhabitat nestedness was significantly reduced when sites were sorted by area rather than by microhabitat richness. As expected, if bird-microhabitat associations are responsible for the nested pattern of distribution, we found a positive correlation between the contributions of bird species and microhabitats to individual site nestedness. Nevertheless, microhabitat assemblages were significantly less nested than bird species assemblages, possibly because of frequent recolonization by birds or uneven sampling among sites. Received: 12 June 1998 / Accepted: 20 September 1998  相似文献   

5.
Aim We examined whether the community compositions of birds, lizards and small mammals were nested in a fragmented landscape in the Thousand Island Lake, China. We also assessed whether the mechanisms influencing nestedness differed among these taxonomic groups. Location Thousand Island Lake, China. Methods Presence/absence matrices were compiled for birds (42 islands) and lizards (42 islands) using line‐transect methods, and for small mammals (14 islands) using live‐trapping methods from 2006 to 2009. Nestedness was analysed using BINMATNEST, and statistical significance was assessed using the conservative null model 3. We used Spearman rank correlations and partial Spearman rank correlations to examine associations of nestedness and habitat variables (area, isolation, habitat diversity and plant richness) as well as life‐history traits (body size, habitat specificity, geographical range size and area requirement) related to species extinction and immigration tendencies. Results The community compositions of birds, lizards and small mammals were all significantly nested, but the causal factors underlying nestedness differed among taxonomic groups. For birds, island area, habitat specificity and area requirement were significantly correlated with nestedness after controlling for other independent variables. For lizards, habitat heterogeneity was the single best correlate of nestedness. For small mammals, island area, habitat heterogeneity and habitat specificity were significantly correlated with nestedness. The nested patterns of birds, lizards and small mammals were not attributable to passive sampling or selective colonization. Main conclusions The processes influencing nested patterns differed among taxonomic groups. Nestedness of bird assemblages was driven by selective extinction, and lizard assemblage was caused by habitat nestedness, while nestedness of small mammals resulted from both selective extinction and habitat nestedness. Therefore, we should take taxonomic differences into account when analysing nestedness to develop conservation guidelines and refrain from using single taxa as surrogates for others.  相似文献   

6.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

7.
An evaluation of randomization models for nested species subsets analysis   总被引:5,自引:0,他引:5  
Randomization models, often termed “null” models, have been widely used since the 1970s in studies of species community and biogeographic patterns. More recently they have been used to test for nested species subset patterns (or nestedness) among assemblages of species occupying spatially subdivided habitats, such as island archipelagoes and terrestrial habitat patches. Nestedness occurs when the species occupying small or species-poor sites have a strong tendency to form proper subsets of richer species assemblages. In this paper, we examine the ability of several published simulation models to detect, in an unbiased way, nested subset patterns from a simple matrix of site-by-species presence-absence data. Each approach attempts to build in biological realism by following the assumption that the ecological processes that generated the patterns observed in nature would, if they could be repeated many times over using the same species and landscape configuration, produce islands with the same number of species and species present on the same number of islands as observed. In mathematical terms, the mean marginal totals (column and row sums) of many simulated matrices would match those of the observed matrix. Results of model simulations suggest that the true probability of a species occupying any given site cannot be estimated unambiguously. Nearly all of the models tested were shown to bias simulation matrices toward low levels of nestedness, increasing the probability of a Type I statistical error. Further, desired marginal totals could be obtained only through ad-hoc manipulation of the calculated probabilities. Paradoxically, when such results are achieved, the model is shown to have little statistical power to detect nestedness. This is because nestedness is determined largely by the marginal totals of the matrix themselves, as suggested earlier by Wright and Reeves. We conclude that at the present time, the best null model for nested subset patterns may be one based on equal probabilities of occurrence for all species. Examples of such models are readily available in the literature. Received: 3 February 1997 / Accepted: 21 September 1997  相似文献   

8.
片断化生境中群落的物种组成常呈现嵌套分布格局。2013年7-8月, 我们在浙江舟山群岛采用截线法对28个岛屿上的蝴蝶群落进行了野外调查, 探讨了岛屿物种嵌套分布格局及其影响因素。通过测量采集标本获得蝶类的生活史特征(最小需求面积、翅展和体重), 查阅文献资料获得蝶类的栖息地特征(岛屿面积、距最近大陆距离和距最近大岛距离), 分析了影响蝶类群落嵌套结构的因素。研究结果显示: (1)舟山群岛蝶类群落符合嵌套分布格局; (2)岛屿面积和物种最小需求面积对嵌套格局的形成有显著影响; (3)舟山群岛蝶类群落嵌套格局的形成支持选择性灭绝假说; (4)随机检验零模型结果显示该嵌套分布格局并非采样偏差造成的。因此, 在制定舟山群岛区域蝶类保护措施时, 应优先考虑那些分布在面积较大岛屿的和最小需求面积较大的物种。  相似文献   

9.
The nested subset pattern (nestedness) of faunal assemblages has been a research focus in the fields of island biogeography and conservation biology in recent decades. However, relatively few studies have described nestedness in butterfly assemblages in oceanic archipelago systems. Moreover, previous studies often quantified nestedness using inappropriate nestedness metrics and random fill algorithms with high Type I errors. The aims of this study are to examine the existence of nestedness and underlying causal mechanisms of butterfly assemblages in the Zhoushan Archipelago, China. We used the line-transect method to determine butterfly occupancy and abundance on 42 study islands from July to August 2014. We obtained butterfly life-history traits (wingspan, body weight and minimum area requirement) by field work and island geographical features (area and isolation) from the literature. We used the recently developed metric WNODF to estimate nestedness. Partial Spearman rank correlation was used to evaluate the associations of nestedness and island geographical features as well as butterfly life-history traits related to species extinction risk and colonization ability. The butterfly assemblages were significantly nested. Island area and minimum area requirement of butterflies were significantly correlated with nestedness after controlling for other independent variables. In contrast, the nestedness of butterflies did not appear to result from passive sampling or selective colonization. However, multi-year studies are needed to confirm that target effects are not muddling these results. Our results indicate that selective extinction may be the main driver of nestedness of butterfly assemblages in our study system. From a conservation viewpoint, we should protect both large islands and species with large area requirement to maximize the number of species preserved.  相似文献   

10.
Aim Although bats of the Caribbean have been studied extensively, previous work is largely restricted to zoogeography, phylogeography or the effects of island characteristics on species richness. Variation among islands in species composition that is related to geographical or environmental variation remains poorly understood for much of the Caribbean. Location Caribbean islands, including the Bahamas, Greater Antilles and Lesser Antilles. Methods Using presence–absence data, we assessed the extent to which island area, maximum island elevation, inter‐island distance and hurricane‐induced disturbance affected patterns of composition and nestedness for bats in the Bahamas, Greater Antilles and Lesser Antilles. Analyses were conducted for all species, as well as for two broadly defined guilds: carnivores and herbivores. Results For the Bahamas, only inter‐island distance accounted for variation in species composition between islands. For the Greater and Lesser Antilles, differences in island area and inter‐island distance accounted for differences in species composition between islands. Variation in species composition was not related significantly to differences in elevation or hurricane‐related disturbance. In general, results of analyses restricted to a particular broad guild (i.e. carnivores or herbivores) mirrored those for all bats. Bat species composition was nested significantly in each island group. Nestedness was stronger in the Greater Antilles and in the Lesser Antilles than in the Bahamas. Carnivore assemblages were nested significantly in the Greater and in the Lesser Antilles, but not in the Bahamas. In contrast, herbivore assemblages were nested significantly in each island group. Main conclusions Inter‐island distance had a greater effect on compositional similarity of Caribbean bat assemblages than did island area, elevation or disturbance related to hurricanes. Differential immigration and hierarchical habitat distributions associated with elevational relief are likely to be primary causes for nestedness of Caribbean bat assemblages.  相似文献   

11.
Nested pattern in flea assemblages across the host's geographic range   总被引:1,自引:0,他引:1  
Understanding non-random patterns in the taxonomic composition of communities occurring in insular or fragmented habitats remains a major goal of ecology. Nested subset patterns are one possible departure from random community assembly that has been reported for communities of both free-living and parasitic animals. Here, we investigate the effects of extrinsic factors on the occurrence of nestedness among the assemblages of fleas found in different populations of the same host species, using data on 25 mammalian host species. The patterns of flea species composition among host populations spanned the entire spectrum from significantly nested to significantly anti-nested. After controlling for host phylogeny, we found that across host species, the tendency for flea assemblages to approach nestedness increased with increasing host geographic range size and with decreasing latitude of the host's geographic range. This tendency also decreased with an increase in a composite variable combining data on mean January and July temperature. The number of closely-related mammalian species living in sympatry with a given host species had no influence on whether or not the structure of flea assemblages among its populations departed from randomness. We propose explanations for these results that include: the possible gradual loss of flea species as a host expands its range from its initial area of origin, the lack of specific flea faunas in narrowly-distributed host species, interspecific differences in the dispersal abilities of flea species becoming amplified in hosts with broad geographical ranges, and the effect of latitude, climate and environment on the probabilities of host-switching and extinction in fleas. Overall, our results suggest that the structure of flea assemblages in mammalian hosts may be driven by features of host biology.  相似文献   

12.
Nested species subsets are a common pattern in many types of communities found in insular or fragmented habitats. Nestedness occurs in some communities of ectoparasites of fish, as does the exact opposite departure from random assembly, anti-nestedness. Here, we looked for nested and anti-nested patterns in the species composition of communities of internal parasites of 23 fish populations from two localities in Finland. We also compared various community parameters of nested and anti-nested assemblages of parasites, and determined whether nestedness may result simply from a size-related accumulation of parasite species by feeding fish hosts. Nested parasite communities were characterised by higher prevalence (proportion of infected fish) and intensities of infection (number of parasites per fish) than anti-nested communities; the two types of non-random communities did not differ with respect to parasite species richness, however. In addition, the correlation between fish size and the number of parasite species harboured by individual fish was much stronger in nested assemblages than in anti-nested ones, where it was often nil. These results were shown not to be artefacts of sampling effort or host phylogeny. They apply to both assemblages of adult and larval parasites, which were treated separately. Since species of larval parasites are extremely unlikely to interact with one another in fish hosts, the establishment of nestedness appears independent of the potential action of interspecific interactions. The species composition of these parasite communities is not determined from within the community, but rather by the extrinsic influence of host feeding rates and how they amplify differences among parasite species in probabilities of colonisation or extinction. Nested patterns occur in parasite communities whose fish hosts accumulate parasites in a predictable fashion proportional to their size, whereas anti-nested communities occur in parasite communities whose fish hosts do not, possibly because of dietary specialisation preventing them from sampling the entire pool of parasite species available locally. Thus, nestedness in parasite communities may result from processes somewhat different from those generating nested patterns in free-living communities.  相似文献   

13.
Matthews  Jeffrey W. 《Plant Ecology》2004,174(2):271-278
Biotas of both geographical islands and habitat islands are often nested subsets of the biotas of successively more species-rich islands within the same system. The life history characteristics of a species may determine how that species contributes to the general pattern of species nestedness. Here, I investigate the floras of 56 sedge meadow wetlands in northern Illinois (USA) in order to characterize the degree of nestedness in these communities, determine which individual plant species contribute to the nested pattern, and investigate species characteristics that might be related to nonrandom patterns of distribution in individual plant species. The entire assemblage of species at all sedge meadows was significantly nested. Species richness and area were significantly correlated, and the nested pattern was closely related to site area, suggesting that species drop out of the assemblage in a predictable order as site area decreases. Some individual species exhibited nonrandom distributions across the sites, occurring more often in large, species-rich sites. Large sites were more likely than smaller sites to contain conservative species, i.e., those typical of pristine natural habitat, whereas nonconservative species were distributed more randomly among sites. Nested patterns of distribution of conservative species with respect to site area may result from their high probability of extinction on small sites or from a tendency for required habitats to co-occur on the same large sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Temporal dynamics and nestedness of an oceanic island bird fauna   总被引:1,自引:0,他引:1  
Aim To examine temporal variation in nestedness and whether nestedness patterns predict colonization, extinction and turnover across islands and species. Location Dahlak Archipelago, Red Sea. Method The distributions of land birds on 17 islands were recorded in two periods 30 years apart. Species and islands were reordered in the Nestedness Temperature Calculator, software for assessing degrees of nestedness in communities. The occupancy probability of each cell, i.e. species–island combinations, was calculated in the nested matrix and an extinction curve (boundary line) was specified. We tested whether historical and current nested ranks of species and islands were correlated, whether there was a relationship between occupancy probability (based on the historical data) and number of extinctions or colonizations (regression analyses) and whether the boundary line could predict extinctions and colonizations (chi‐square analyses). Results Historical and current nested ranks of islands and species were correlated but changes in occupancy patterns were common, particularly among bird species with intermediate incidence. Extinction and turnover of species were higher for small than large islands, and colonization was negatively related to isolation. As expected, colonizations were more frequent above than below the boundary line. Probability of extinction was highest at intermediate occupancy probability, giving a quadratic relationship between extinction and occupancy probability. Species turnover was related to the historical nested ranks of islands. Colonization was related negatively while extinction and occupancy turnover were related quadratically to historical nested ranks of species. Main conclusions Some patterns of the temporal dynamics agreed with expectations from nested patterns. However, the accuracy of the predictions may be confounded by regional dynamics and distributions of idiosyncratic, resource‐limited species. It is therefore necessary to combine nestedness analysis with adequate knowledge of the causal factors and ecology of targeted species to gain insight into the temporal dynamics of assemblages and for nestedness analyses to be helpful in conservation planning.  相似文献   

15.
Aim The potential nestedness of assemblages of birds, arboreal marsupials and lizards was examined in a fragmented landscape in south‐eastern Australia. We assessed which ecological processes were related to the presence or absence of nestedness, particularly in relation to previous autoecological studies in the same study area. Location Data were collected at Buccleuch State Forest, c. 100 km to the west of the Australian Capital Territory in south‐eastern Australia. Methods Presence/absence matrices were compiled for birds (40 pine sites, 40 continuous forest sites, 43 fragments), arboreal marsupials (41 continuous forest sites, 39 fragments) and lizards (30 sites including all landscape elements) from a range of field surveys conducted since 1995. Nestedness was analysed using a standardized discrepancy measure, and statistical significance was assessed using the RANDNEST null model. For birds, species thought to be extinction‐prone were analysed separately to assess if assemblages comprising extinction‐prone species were more strongly nested than others. Also, sites with a substantial amount of Eucalyptus radiata were analysed separately to assess whether nestedness was stronger if environmental heterogeneity was minimized. Results The assemblages of lizards and arboreal marsupials were not nested, probably because of qualitative differences between species in response to environmental conditions. The assemblages of birds in fragments and pine sites were significantly nested, but nestedness was substantially stronger in fragments. For birds, nestedness appeared to be related to somewhat predictable extinction sequences, although there were many outliers in the analysis. Nestedness increased when extinction‐prone species were analysed by themselves. Nestedness decreased when environmental heterogeneity was minimized by including only sites dominated by E. radiata. Main conclusions In a given landscape, different vertebrate assemblages can respond in vastly different ways to fragmentation. Nestedness analyses can provide a useful overview of likely conservation issues in fragmented landscapes, for example by highlighting the possible roles of local extinction and immigration. However, nestedness analyses are a community‐level tool, and should be complemented by more detailed autoecological studies when applied in a conservation context.  相似文献   

16.
Nested structures of species assemblages have been frequently associated with patch size and isolation, leading to the conclusion that colonization–extinction dynamics drives nestedness. The ‘passive sampling’ model states that the regional abundance of species randomly determines their occurrence in patches. The ‘habitat amount hypothesis’ also challenges patch size and isolation effects, arguing that they occur because of a ‘sample area effect’. Here, we (a) ask whether the structure of the mammal assemblages of fluvial islands shows a nested pattern, (b) test whether species’ regional abundance predicts species’ occurrence on islands, and (c) ask whether habitat amount in the landscape and matrix resistance to biological flow predict the islands’ species composition. We quantified nestedness and tested its significance using null models. We used a regression model to analyze whether a species’ relative regional abundance predicts its incidence on islands. We accessed islands’ species composition by an NMDS ordination and used multiple regression to evaluate how species composition responds to habitat amount and matrix resistance. The degree of nestedness did not differ from that expected by the passive sampling hypothesis. Likewise, species’ regional abundance predicted its occurrence on islands. Habitat amount successfully predicted the species composition on islands, whereas matrix resistance did not. We suggest the application of habitat amount hypothesis for predicting species composition in other patchy systems. Although the island biogeography perspective has dominated the literature, we suggest that the passive sampling perspective is more appropriate for explaining the assemblages’ structure in this and other non‐equilibrium patch systems. Abstract in Portuguese is available with online material.  相似文献   

17.
Aims Nestedness is a characteristic of insular metacommunity structure. Relatively few studies, however, have attempted to evaluate temporal changes in nestedness, or elucidate the mechanisms underlying nestedness. I evaluated both spatial and temporal patterns of nestedness in the insular floras of four archipelagoes of small islands in the Bahamas and the potential underlying environmental gradients.Methods The NODF (a nestedness metric based on overlap and decreasing fill) and the matrix temperature measure, T, were used to quantify nestedness in insular floras on small islands near Abaco, Andros, Great Exuma and the Exuma Cays, Bahamas. Two different null models were employed for each nestedness measure. Six environmental variables were evaluated in relation to nestedness by ordering islands according to gradients and recalculating NODF scores.Important findings All archipelagoes were significantly nested. Nestedness among sites contributed more to overall nestedness than did nestedness among species. NODF scores varied among archipelagoes, but were surprisingly constant over time. Ordering islands by vegetated area yielded the highest nestedness scores for three archipelagoes; ordering islands by protection from exposure yielded the highest nestedness score for one archipelago. Nestedness scores varied little over time even though species compositions changed, indicating that extinctions occurred in a deterministic manner. The relative importance of area suggests extinction is an important mechanism in producing nestedness. Attempting to determine the relative importance of immigrations or extinctions requires some assumptions, however, and both processes are likely cumulative in most cases.  相似文献   

18.
Taxonomic nestedness, the degree to which the taxonomic composition of species‐poor assemblages represents a subset of richer sites, commonly occurs in habitat fragments and islands differing in size and isolation from a source pool. However, species are not ecologically equivalent and the extent to which nestedness is observed in terms of functional trait composition of assemblages still remains poorly known. Here, using an extensive database on the functional traits and the distributions of 6316 tropical reef fish species across 169 sites, we assessed the levels of taxonomical vs functional nestedness of reef fish assemblages at the global scale. Functional nestedness was considerably more common than taxonomic nestedness, and generally associated with geographical isolation, where nested subsets are gradually more isolated from surrounding reef areas and from the center of biodiversity. Because a nested pattern in functional composition implies that certain combinations of traits may be represented by few species, we identified these groups of low redundancy that include large herbivore‐detritivores and omnivores, small piscivores, and macro‐algal herbivores. The identified patterns of nestedness may be an outcome of the interaction between species dispersal capabilities, resource requirements, and gradients of isolation among habitats. The importance of isolation in generating the observed pattern of functional nestedness within biogeographic regions may indicate that disturbance in depauperate and isolated sites can have disproportionate effects on the functional structure of their reef fish assemblages.  相似文献   

19.
I tested the effects of pool size and spatial position (upstream or downstream) on fish assemblage attributes in isolated and connected pools in an upland Oklahoma stream, United States. I hypothesized that there would be fundamental differences between assemblages in these two pool types due to the presence or absence of colonization opportunities. Analyses were carried out at three ecological scales: (1) the species richness of pool assemblages, (2) the species composition of pool assemblages, and (3) the responses of individual species. There were significant species-volume relationships for isolated and connected pools. However, the relationship was weaker and there were fewer species, on average, in isolated pools. For both pool types, species incidences were significantly nested such that species-poor pools tended to be subsets of species-rich pools, a common pattern that ultimately results from species-specific differences in colonization ability and/or extinction susceptibility. To examine the potential importance of these two processes in nestedness patterns in both pool types, I made the following two assumptions: (1) probability of extinction should decline with increasing pool size, and (2) probability of immigration should decline in an upstream direction (increasing isolation). When ordered by pool volume, only isolated pools were significantly nested suggesting that these assemblages were extinction-driven. When ordered by spatial position, only connected pools were significantly nested (more species downstream) suggesting that differences in species-specific dispersal abilities were important in structuring these assemblages. At the individual-species level, volume was a significant predictor of occurrence for three species in isolated pools. In connected pools, two species showed significant position effects, one species showed a pool volume effect, and one species showed pool volume and position effects. These results demonstrate that pool size and position within a watershed are important determinants of fish species assemblage structure, but their importance varies with the colonization potential of the pools. Isolated pool assemblages are similar to the presumed relaxed faunas of montane forest fragments and land bridge islands, but at much smaller space and time scales. Received: 6 December 1996 / Accepted: 10 December 1996  相似文献   

20.
Most insular communities exhibit nestedness, with the species assemblages of the more depauperate islands constituting subsets of those of the richer. Several methods for the estimation and evaluation of nestedness have been developed during the last fifteen years. In this paper we use two of the more recent and elaborate methods, namely the ‘temperature’ method of Atmar and Patterson and the ‘departures’ method of Lomolino, in order to investigate patterns of nestedness in the distribution of two well studied and speciose animal groups, terrestrial isopods and land snails, in the Kyklades archipelago (Aegean Sea. Greece) that lies between two continental regions, Significant nestedness is present in both species assemblages and, surprisingly, each method gives almost identical levels of nestedness for the two animal groups. Isolation has been found to be more important in producing nestedness in both groups than area, which does not seem to be an important explanatory factor. However, the role of isolation in this case is better understood under an historical perspective, taking into account the complex palaeogeography of the region and the differential departmentalisation of distinct island groups. Additionally, certain metrics of habitat diversity that were included in the analysis were the best explanatory factors of nestedness, indicating a more complex causal pattern that also involves extinction. Since the two methods used are based on different assumptions and have different scopes, their results do not converge. The ‘temperature’ method finds the maximum possible nestedness in an island sorting which does not necessarily lead to plausible biogeographical explanations, while the ‘departures’ method, although more useful in detecting causality, fails to fully evaluate levels of nestedness. Nevertheless, both methods are valuable tools in the exploration of interesting distributional patterns, when this effort is accompanied by a good understanding of historical, ecological and idiosyncratic properties of each particular data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号