首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.  相似文献   

2.
Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate phenotypes. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neurons such as cerebellar Purkinje neurons, hippocampal pyramidal neurons, mitral neurons of the olfactory bulb and cortical pyramidal neurons. The lack of GDAP1 staining in the white matter and nerve roots suggested that glial cells do not express GDAP1. In DRG cultures satellite cells and Schwann cells were GDAP1-negative. Overexpression of GDAP1-induced fragmentation of mitochondria suggesting a role of GDAP1 in the fission pathway of the mitochondrial dynamics. Missense mutations showed two different patterns: most of them induced mitochondrial fragmentation but the T157P mutation showed an aggregation pattern. Whereas null mutations of GDAP1 should be associated with loss of function of the protein, missense mutations may act through different pathogenic mechanisms including a dominant-negative effect, suggesting that different molecular mechanisms may underlay the pathogenesis of CMT4A.  相似文献   

3.
Neurofilament light gene mutations have been linked to a subset of patients with Charcot-Marie-Tooth disease, the most common inherited motor and sensory neuropathy. We have previously shown that Charcot-Marie-Tooth-linked mutant neurofilament light assembles abnormally in non-neuronal cells. In this study, we have characterized the effects of expression of mutant neurofilament light proteins on axonal transport in a neuronal cell culture model. We demonstrated that the Charcot-Marie-Tooth-linked neurofilament light mutations: (i) affect the axonal transport of mutant neurofilaments; (ii) have a dominant-negative effect on the transport of wild-type neurofilaments; (iii) affect the transport of mitochondria and the anterograde axonal transport marker human amyloid precursor protein; (iv) result in alterations of retrograde axonal transport and (v) cause fragmentation of the Golgi apparatus. Increased neuritic degeneration was observed in neuronal cells overexpressing neurofilament light mutants. Our results suggest that these generalized axonal transport defects could be responsible for the neuropathy in Charcot-Marie-Tooth disease.  相似文献   

4.
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.  相似文献   

5.
6.
郭家松  李俊 《生命科学》2010,(9):863-868
由基因突变引起的外周神经病统称为Charcot-Marie-Tooth(CMT)病,它是最常见的遗传性神经系统疾病之一,发病率为1/2500。目前已知有超过53个染色体位点和35个特定基因与CMT有关,但是大部分CMT都是由周围髓鞘蛋白22(PMP22)基因变异所引起的。该文重点对PMP22的生物学及相关疾病的病理生理学进行综述。  相似文献   

7.
腓骨肌萎缩症也称夏科-马利-杜斯氏病(Charcot-Marie-Tooth disease, CMT),是人类最常见的遗传性周围神经病之一,其遗传方式以常染色体显性遗传为主,也有部分呈常染色体隐性遗传或X连锁显性或隐性遗传。根据临床表型将CMT分为脱髓鞘型(CMT1)、轴突型(CMT2)和中间型(DI-CMT)。常染色体隐性遗传的CMT1(AR-CMT1,也称CMT4型)临床表现除了CMT常见的四肢远端进行性肌无力和萎缩,以及高足弓和爪形手外,常起病早,进展迅速,并有不同程度的感觉障碍和脊柱畸形(以脊柱侧凸为主)。近年来的研究显示,CMT4有11种亚型,其中有些亚型的致病机制较明确,有些亚型存在建立者突变,有些亚型还局限在临床描述和突变检出上。文章综述了CMT4的最新研究进展,包括各亚型的临床表现、致病机制和小鼠模型等。  相似文献   

8.
Abstract Charcot-Marie-Tooth disease type 4B2 with early-onset glaucoma (CMT4B2, OMIM 604563) is a genetically-heterogeneous childhood-onset neuromuscular disorder. Here, we report the case of a 15-year-old male adolescent with lower extremity weakness, gait abnormalities, foot deformities and early-onset glaucoma. Since clinical diagnosis alone was insufficient for providing pathogenetic evidence to indicate that the condition belonged to a consanguineous family, we applied whole-exome sequencing to samples from the patient, his parents and his younger brother, assuming that the patient's condition is transmitted in an autosomal recessive pattern. A frame-shift mutation, c.4571delG (P.Gly1524Glufs*42), was revealed in the CMT4B2-related gene SBF2 (also known as MTMR13, MIM 607697), and this mutation was found to be homozygous in the proband and heterozygous in his parents and younger brother. Together with the results of clinical diagnosis, this case was diagnosed as CMT4B2. Our finding further demonstrates the use of whole-exome sequencing in the diagnosis and treatment of rare diseases.  相似文献   

9.
宋书娟  闫明  王小竹  章远志  邹俊华  钟南 《遗传》2007,29(7):800-804
在两个X连锁显性腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT) 家系中进行了GJB1基因的突变分析。提取基因组DNA, PCR(polymerase chain reaction)反应扩增GJB1基因编码序列, 进行单链构象多态性(single strand conformational polymorphism, SSCP)分析, 对有差异SSCP带型的PCR产物进行测序, 结果在两家系中发现同一GJB1基因c.622G→A (Glu208Lys)突变。所发现的突变位点在国内尚未报道。  相似文献   

10.
Wilson's disease (WND) is an inherited disorder of copper metabolism. Divalent metal transporter1 (DMT1) and ATP7A play important roles in metal transport in humans. The frequency of two single nucleotide polymorphisms of the DMT1 gene: DMT1 IVS4 C>A, DMT1 11245 T>C and two of the ATP7A gene: rs1062472 T>C, ATP7A rs 2227291 G>C have been evaluated in a population of 108 Wilson's disease patients and 108 sex- and age-matched healthy volunteers. The DMT1 IVS4 C(+) allele occurred more frequently in WND than in the healthy controls. The allele frequencies of other studied polymorphisms in WND group were in line with frequencies obtained for healthy volunteers. Neither of the polymorphisms had an impact on the age at onset or clinical phenotype of WND.  相似文献   

11.
12.
目的:通过数据挖掘分析ATP1A1在肾透明细胞癌中的表达及意义。方法:通过Oncomine数据库检索关于ATP1A1的mRNA信息,采用The Human Protein Atlas分析ATP1A1蛋白在正常肾组织和肾透明细胞癌中表达情况,GEPIA网站中TCGA数据对ATP1A1低表达的肾透明细胞癌患者进行生存分析,Meth HC数据库分析ATP1A1甲基化水平和蛋白相互作用,利用String-DB数据分析ATP1A1与上下游蛋白的相互作用。结果:肾透明细胞癌(Clear cell Renal Cell Carcinoma,cc RCC)组织中ATP1A1的mRNA表达水平较正常对照组明显降低。免疫组化结果证实ATP1A1蛋白质表达变化与mRNA相似。TCGA数据中得出ATP1A1低表达患者的总体生存期明显短于高表达组患者。此外,ATP1A1基因启动子区在肾透明细胞癌中的甲基化水平明显高于正常肾组织中。同时,ATP1A1与ATP1B1、FXYD2、ATP1B2等蛋白可能存在相互作用。结论:大数据分析结果表明ATP1A1在肾透明细胞癌中低表达,并与其发生发展相关,可能作为其潜在的治疗靶点。  相似文献   

13.
Four missense mutations, that target highly conserved amino acid residues in the small GTPase Rab7, have been associated with the Charcot-Marie-Tooth (CMT) type 2B phenotype. CMT2B peripheral axonal neuropathies are characterized by severe sensory loss, often complicated by infections, arthropathy, and amputations. Here, we have investigated the biochemical and functional properties of the Rab7 K157N mutated protein. Interestingly, Rab7 K157N showed altered nucleotide exchange rate and GTP hydrolysis compared to the wild type protein. Consistently, the majority of the expressed protein in HeLa cells was bound to GTP. In addition, Rab7 K157N was able to restore EGF degradation, previously inhibited by Rab7 silencing. Altogether these data indicate that Rab7 K157N, similarly to the other three mutated proteins causative of CMT2B, is predominantly in the GTP-bound form and behaves as an active mutant. Therefore, activated forms of Rab7 protein cause the CMT2B disease.  相似文献   

14.
Copper sulfate (CuSO4), micron copper oxide (micron CuO) and nano copper oxide (nano CuO) at different concentrations were, respectively, added to culture media containing Caco-2 cells and their effects on Ctr1, ATP7A/7B, MT and DMT1 gene expression and protein expression were investigated and compared. The results showed that nano CuO promoted mRNA expression of Ctr1 in Caco-2 cells, and the difference was significant compared with micron CuO and CuSO4. Nano CuO was more effective in promoting the expression of Ctr1 protein than CuSO4 and micron CuO at the same concentration. Nano CuO at a concentration of 62.5 μM increased the mRNA expression levels of ATP7A and ATP7B, and the difference was significant compared with CuSO4. The addition of CuSO4 and nano CuO to the culture media promoted the expression of ATP7B proteins. CuSO4 at a concentration of 125 μM increased the mRNA expression level of MT in Caco-2 cells, and the difference was significant compared with nano CuO and micron CuO. Nano CuO at a concentration of 62.5 μM inhibited the mRNA expression of DMT1, and the difference was significant compared with CuSO4 and micron CuO. Thus, the effects of CuSO4, micron CuO and nano CuO on the expression of copper transport proteins and the genes encoding these proteins differed considerably. Nano CuO has a different uptake and transport mechanism in Caco-2 cells to those of CuSO4 and micron CuO.  相似文献   

15.
16.
用贵州小香猪建立动脉粥样硬化动物模型,探讨动脉粥样硬化小型猪三磷酸腺苷结合盒转运体 A1(ABCA1) 表达的变化 . 采用血管内膜损伤法加高脂高胆固醇饲料喂养贵州小香猪,建立动脉粥样硬化动物模型 . 血浆总胆固醇、甘油三酯和高密度脂蛋白胆固醇的浓度均用氧化酶法测定,采用逆转录聚合酶链反应检测 ABCA1mRNA 水平,蛋白质印迹和免疫组织化学检测 ABCA1 蛋白质的表达 . 喂养 12 个月后,实验组与正常对照组比较,空腹血浆总胆固醇、甘油三酯和高密度脂蛋白胆固醇水平升高;实验组小型猪主动脉、髂动脉、颈总动脉和冠状动脉可见动脉粥样硬化斑块和脂质条纹;实验组小型猪肝组织、主动脉、小肠组织 ABCA1 表达上调 . 结果提示,采用血管内膜损伤法加高脂高胆固醇饲料喂养小型猪可建立动脉粥样硬化动物模型 . 动脉粥样硬化小型猪肝组织、主动脉和小肠组织 ABCA1 表达上调 .  相似文献   

17.
18.
Copper plays an essential role in human physiology and is indispensable for normal growth and development. Enzymes that are involved in connective tissue formation, neurotransmitter biosynthesis, iron transport, and others essential physiological processes require copper as a cofactor to mediate their reactions. The biosynthetic incorporation of copper into these enzymes takes places within the secretory pathway and is critically dependent on the activity of copper-transporting ATPases ATP7A or ATP7B. In addition, ATP7A and ATP7B regulate intracellular copper concentration by removing excess copper from the cell. These two transporters belong to the family of P1-type ATPases, share significant sequence similarity, utilize the same general mechanism for their function, and show partial colocalization in some cells. However, the distinct biochemical characteristics and dissimilar trafficking properties of ATP7A and ATP7B in cells, in which they are co-expressed, indicate that specific functions of these two copper-transporting ATPases are not identical. Immuno-detection studies in cells and tissues have begun to suggest specific roles for ATP7A and ATP7B. These experiments also revealed technical challenges associated with quantitative detection of copper-transporting ATPases in tissues, as illustrated here by comparing the results of ATP7A and ATP7B immunodetection in mouse cerebellum. This work was supported by the National Institute of Health grants PO1 GM 067166–01 and DK R01 DK071865 to S.L.  相似文献   

19.
糖尿病小型猪三磷酸腺苷结合盒转运体A1表达的变化   总被引:1,自引:3,他引:1  
用贵州小香猪建立2型糖尿病动物模型,探讨糖尿病小型猪三磷酸腺苷结合盒转运体A1(ABCA1)表达的变化.采用高脂高蔗糖饲料喂养贵州小香猪,建立2型糖尿病动物模型.血浆总胆固醇、甘油三酯、高密度脂蛋白胆固醇和葡萄糖的浓度均用氧化酶法测定,血浆游离脂肪酸(FFA)用比色法测定, 采用逆转录-聚合酶链反应、蛋白质印迹和免疫组织化学分别检测ABCA1mRNA和蛋白质的表达.喂养6个月后,实验组与正常对照组比较,空腹血糖值明显升高;空腹胰岛素水平在头3个月轻度升高,在第6个月末其水平降低; 血清总胆固醇、甘油三酯和游离脂肪酸水平升高;肝组织、冠状动脉、肾组织ABCA1表达上调,同时观测到糖尿病小型猪肝组织LXRα表达上调.结果提示高脂高蔗糖饲料可引起小型猪脂质和糖代谢紊乱, 并导致肝组织、冠状动脉和肾组织ABCA1表达上调以及肝组织LXRα表达上调.  相似文献   

20.
Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号