首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in IAA oxidase, and in cytoplasmic and ionically wall-bound peroxidase activities were studied in the developing fibres of three cotton cultivars ( Gossypium hirsutum L. cv. Gujarat-67, cv. Khandwa-2 and G. herbaceum L. cv. Digvijay), designated as long, medium and short staple cultivars, respectively. In all the three cultivars IAA oxidase activity was low during the fibre elongation phase, while the activity increased significantly during the secondary thickening phase. The increase in IAA oxidase activity in the three cultivars showed close correspondence with their respective total period of elongation. No relationship between cytoplasmic peroxidase activity and fibre development was discernible. The ionically bound wall peroxidase activity, however, recorded low levels during the elongation phase and higher levels during the secondary thickening phase. The role of wall peroxidase in cessation of elongation growth is discussed.  相似文献   

2.
The influence of a longitudinal (tonic) gravitational force and of auxin on the pattern of growth and cell polarity has been studied on intact roots of wheat seedlings. A klinostat technique was used for controlling gravitation. Growth in length was evaluated as cell division activity, rate of cell elongation (μ/h) and duration of elongation (h). Exogenous auxin (1-NAA) increases the rate of cell elongation in all concentrations tested (10−8 — 3 × 10−7m ) and shortens the time of elongation with increasing concentration. It promotes rate of cell elongation in roots as it does in shoots. It also accentuates the polar insertion of root hairs and their growth. The tonic effect of gravitation resembles that of an increase in auxin both in light and darkness. The results are discussed in relation to plagiotropic growth of roots, root growth promotions by auxin, and the difference between root and shoot growth.  相似文献   

3.
Declining temperature and low light often appear together to affect cotton (Gossypium hirsutum L.) growth and development. To investigate the interaction on fibre elongation, two cultivars were grown in fields in 2010 and 2011 and in pots in 2011 under three shading levels for three planting dates, and the differences of environmental conditions between different planting dates were primarily on temperature. Fibre length in the late planting date 25 May was the longest instead of the normal planting date. Late planting prolonged fibre elongation period and the effect of late planting on fibre length formation was greater than low light. In the normal planting date, shading increased fibre length through delaying the peak of β-1,3-glucanase gene expression and bringing the peak of β-1,3-glucan synthase gene expression forward, leading to a longer duration of plasmodesmata(PD) closure to increase fibre length, instead of changing sucrose contents or relate enzyme activities. However, in the late planting dates, the difference of the duration of PD closure between shading treatments was not obvious, but low light had a negative impact on sucrose contents, sucrose synthase (SuSy) and vacuolar invertase(VIN) activities during fibre rapid elongation period, leading to the decline of fibre length. Due to late planting and low light, the decreased extent of fibre length of Sumian 15 was larger than Kemian 1. Under the combined condition, Sumian 15 had a shorter gene expression of Expansin, and more sensitive sucrose content, VIN and SuSy activity during fibre rapid elongation period. This resulted in the length formation of Sumian 15 which was more sensitive than Kemian 1, when the cotton suffered the combined effects.  相似文献   

4.
Since the discovery of auxin, a debate has taken place as to whether the auxin distribution in elongating organs can account for the distinctive cell elongation profiles that have been found. In an attempt to address this important issue, the elongation profiles of cells have been compared in the hypocotyls of wild-type and auxin-hypersensitive axr3-1 Arabidopsis Columbia ecotype seedlings. Clear differences in cell elongation profiles were found in the two types of seedling, whether they were light- or dark-grown. However, it was not possible unambiguously to ascribe the cell elongation profile differences to the proposition that the axr3-1 mutation causes the hypocotyl to be hypersensitive to auxin. The possibility that the abnormal hypocotyl elongation profile of the mutant was a secondary effect, consequent on a more fundamental effect of the axr3-1 mutation, is considered. It is clear from this study that cell elongation and its control needs to be studied at the cell, and not the organ, level. To characterize a mutant as having a short, or long, hypocotyl is inadequate. To determine which factors control the timing and the magnitude of cell elongation requires the demonstration of correlations between the growth rate of cells and their content of regulating substances or their sensitivity to that substance. Studies of the cell elongation profiles of the many hypocotyl length mutants could also be a very effective means of probing the co-ordination of root and shoot elongation.  相似文献   

5.
Yang T  Davies PJ  Reid JB 《Plant physiology》1996,110(3):1029-1034
Exogenous gibberellin (GA) and auxin (indoleacetic acid [IAA]) strongly stimulated stem elongation in dwarf GA1-deficient le mutants of light-grown pea (Pisum sativum L.): IAA elicited a sharp increase in growth rate after 20 min followed by a slow decline; the GA response had a longer lag (3 h) and growth increased gradually with time. These responses were additive. The effect of GA was mainly in internodes less than 25% expanded, whereas that of IAA was in the older, elongating internodes. IAA stimulated growth by cell extension; GA stimulated growth by an increase in cell length and cell number. Dwarf lkb GA-response-mutant plants elongated poorly in response to GA (accounted for by an increase in cell number) but were very responsive to IAA. GA produced a substantial elongation in lkb plants only in the presence of IAA. Because lkb plants contain low levels of IAA, growth suppression in dwarf lkb mutants seems to be due to a deficiency in endogenous auxin. GA may enhance the auxin induction of cell elongation but cannot promote elongation in the absence of auxin. The effect of GA may, in part, be mediated by auxin. Auxin and GA control separate processes that together contribute to stem elongation. A deficiency in either leads to a dwarfed phenotype.  相似文献   

6.
BACKGROUND AND AIMS: Growth and development of plant organs, including leaves, depend on cell division and expansion. Leaf size is increased by greater cell ploidy, but the mechanism of this effect is poorly understood. Therefore, in this study, the role of cell division and expansion in the increase of leaf size caused by polyploidy was examined by comparing various cell parameters of the mesophyll layer of developing leaves of diploid and autotetraploid cultivars of two grass species, Lolium perenne and L. multiflorum. METHODS: Three cultivars of each ploidy level of both species were grown under pot conditions in a controlled growth chamber, and leaf elongation rate and the cell length profile at the leaf base were measured on six plants in each cultivar. Cell parameters related to division and elongation activities were calculated by a kinematic method. KEY RESULTS: Tetraploid cultivars had faster leaf elongation rates than did diploid cultivars in both species, resulting in longer leaves, mainly due to their longer mature cells. Epidermal and mesophyll cells differed 20-fold in length, but were both greater in the tetraploid cultivars of both species. The increase in cell length of the tetraploid cultivars was caused by a faster cell elongation rate, not by a longer period of cell elongation. There were no significant differences between cell division parameters, such as cell production rate and cell cycle time, in the diploid and tetraploid cultivars. CONCLUSION: The results demonstrated clearly that polyploidy increases leaf size mainly by increasing the cell elongation rate, but not the duration of the period of elongation, and thus increases final cell size.  相似文献   

7.
Timing of the auxin response in etiolated pea stem sections   总被引:17,自引:12,他引:5       下载免费PDF全文
The short term growth response of etiolated pea stem segments (Pisum sativum L., var. Alaska) was investigated with the use of a high resolution growth-recording device. The immediate effect of treatment with indole-3-acetic acid is an inhibition of growth. This inhibition lasts about 10 minutes, and then the rate of elongation rises abruptly to a new steady rate about 4 times the rate of elongation before auxin treatment. This rapid steady rate of elongation, however, continues for only about 25 minutes before declining suddenly to a lower steady rate of growth about 2 times the rate of elongation before the addition of auxin. Pretreatment of the segments with cycloheximide or actinomycin strongly inhibits both phases of auxin-promoted elongation without altering the length of the latent period in response to the hormone.  相似文献   

8.

Our understanding of the developmental changes that occur during top leader elongation in gymnosperms lags behind that in angiosperms. We developed a semiquantitative method for determining epidermal cell size, by measuring the Feret diameter after cell wall staining of stem epidermal peels. This method allowed a large number of cells to be measured at various locations in the top leader of the Christmas tree Abies nordmanniana. Further, we have identified the growth rate of individual sections of the top leader, and the relationship between cell length and needle arrangement throughout the top leader. At bud break, all stem units begin to elongate simultaneously, but growth ceases from the base upwards during top leader elongation. Long top leaders were characterized by having up to three times as long cells at the base compared to short top leaders, whereas the cell lengths were similar in the apical region independent of the given plant growth capacity. In the basal sector, the level of auxin was much higher, whereas the levels of cytokinins were lower than in the apical sector, causing the auxin/cytokinin ratio to change from about 3 in the apical sector to more than 20 in the basal part. The Fibonacci number changed in the apical sector due to an increased cell number in the stem units and therefore longer distance between the needles. We conclude that the general growth pattern during top leader elongation in A. nordmanniana is similar to angiosperms but differs at the cellular level.

  相似文献   

9.
The role of auxin in controlling leaf expansion remains unclear. Experimental increases to normal auxin levels in expanding leaves have shown conflicting results, with both increases and decreases in leaf growth having been measured. Therefore, the effects of both auxin application and adjustment of endogenous leaf auxin levels on midrib elongation and final leaf size (fresh weight and area) were examined in attached primary monofoliate leaves of the common bean (Phaseolus vulgaris) and in early Arabidopsis rosette leaves. Aqueous auxin application inhibited long-term leaf blade elongation. Bean leaves, initially 40 to 50 mm in length, treated once with alpha-naphthalene acetic acid (1.0 mm), were, after 6 d, approximately 80% the length and weight of controls. When applied at 1.0 and 0.1 mm, alpha-naphthalene acetic acid significantly inhibited long-term leaf growth. The weak auxin, beta-naphthalene acetic acid, was effective at 1.0 mm; and a weak acid control, benzoic acid, was ineffective. Indole-3-acetic acid (1 microm, 10 microm, 0.1 mm, and 1 mm) required daily application to be effective at any concentration. Application of the auxin transport inhibitor, 1-N-naphthylphthalamic acid (1% [w/w] in lanolin), to petioles also inhibited long-term leaf growth. This treatment also was found to lead to a sustained elevation of leaf free indole-3-acetic acid content relative to untreated control leaves. Auxin-induced inhibition of leaf growth appeared not to be mediated by auxin-induced ethylene synthesis because growth inhibition was not rescued by inhibition of ethylene synthesis. Also, petiole treatment of Arabidopsis with 1-N-naphthylphthalamic acid similarly inhibited leaf growth of both wild-type plants and ethylene-insensitive ein4 mutants.  相似文献   

10.
棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系   总被引:7,自引:0,他引:7  
棉纤维细胞于开花当天从棉胚珠表皮上发生,随即开始伸长生长,星S型生长曲线。棉纤维细胞的可溶性蛋白、过氧化物酶活性和IAA氧化酶活性同伸长生长的关系不大;而离子型结合的细胞壁蛋白质含量、过氧化物酶活性和IAA氧化酶活性同棉纤维细胞的伸长生长关系较大,表现在棉纤维细胞快速伸长期活性较低,而在伸长生长停止时出现活性高峰,同棉纤维细胞的伸长生长有负相关现象。  相似文献   

11.
The effects of gibberellic acid on the longevity and elongation of variously aged, debladed petioles of Coleus blumei were studied, with particular reference to the hypotheses 1) that auxin increases longevity by increasing growth, and 2) that gibberellic acid acts by increasing the endogenous levels of auxin.

Gibberellic acid, substituted for the leaf blades, significantly decreased longevity of younger petioles, as measured by days or hours to abscission. Gibberellic acid also decreased the longevity resulting from 0.1% indoleacetic acid. This is the opposite of the effect expected if it is increasing auxin levels in the petiole.

In its effect on elongation of younger petioles, however, gibberellic acid did act in the direction expected if it were increasing effective levels of auxin in the petiole. The elongation rate from 0.1% gibberellic acid plus 0.1% indoleacetic acid in lanolin was as large or larger than that for 1.0% indoleacetic acid.

Petioles which were 10 or more weeks old (i.e., at positions 5+ below the apical bud were not affected by 0.1% gibberellic acid in either longevity or rate of elongation, with or without 0.1% indoleacetic acid. Since 1.0% indoleacetic acid increases both longevity and elongation rate of these petioles over 0.1% indoleacetic acid, gibberellic acid is clearly not acting on older petioles as if it were increasing effective auxin levels).

  相似文献   

12.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

13.
Style and stigma elongation and stigma unfolding, and the roles of plant hormones in these processes in Gaillardia grandiflora Van Houtte were investigated. Style and stigma elongation in vivo began just after anthesis, and style elongation was accompanied by epidermal cell elongation (greatest near the stigma) and a fresh weight increase, but not by cell division or a dry weight increase. The stigma unfolded after the style and stigma elongated. Style-stigma units excised from young disc flowers of this composite were measured as they responded to plant growth regulators applied singly, as well as in sequential and simultaneous combinations, in vitro. Style elongation was promoted by auxin, was inhibited by gibberellins and ethylene, and was unaffected by other growth regulators. Stigma elongation followed a similar pattern of response. Endogenous auxin levels and ethylene production showed parallel variation and endogenous gibberellin levels showed inverse variation with style and stigma elongation. Stigma unfolding was more sensitive to auxin applications and was promoted by applied ethylene. Ethylene production showed parallel variation and endogenous auxin levels showed inverse variation with stigma unfolding. AVG and Co2+ applications decreased auxin-induced style elongation and fusicoccin promoted all of the growth responses of style-stigma units in vitro. A gibberellin-auxin-ethylene-acid growth interaction mode of control is proposed for these three growth processes.  相似文献   

14.
Polyacrylamide gel electrophoresis was used to study the differences in patterns of the isoperoxidase spectrum in leaf tissues of the genome series (2n, 3n, 4n) of twoNicotiana tabacum L. cultivars,i.e. in the growth stage of the 5th–6th and 10th–11th leaf, and in the stage of elongation growth. Mutual comparisons of the cultivars showed that the variability and difference in patterns between the cultivars in later growth stages was more important. In both cultivars only one rapidly migrating main band of isoenzymes was registered within the range of Rm 0.45–0.77; only in the stage of elongation growth on the 2n and 4n levels two bands were recorded. No association between the number of genomes and the number or distribution of isoperoxidases was found.  相似文献   

15.
Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.  相似文献   

16.
Zhao H  Hertel R  Ishikawa H  Evans ML 《Planta》2002,216(2):293-301
The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.  相似文献   

17.
Auxin Metabolism in Developing Cotton Hairs   总被引:13,自引:0,他引:13  
Growth parameters and auxin metabolism of developing cotton(Gossypium hirsutum L., cv. Sankar 5) fibre were studied inplants grown in the field. Fibre length and dry weight wereplotted against boll age and fitted to the best-fit curves bycomputer curvilinear regression analysis. Based on this analysis,fibre development was divided into four phases: (i) initiation,(ii) elongation, (iii) secondary thickening, and (iv) maturation.Changes in IAA oxidase and peroxidase activity showed that IAAcatabolism was low during the elongation phase, while duringthe phase of secondary thickening it was very high (four-foldincrease). It is suggested that the level of IAA may regulatethe termination of primary wall extension and the initiationof cellulose deposition in cotton fibre.  相似文献   

18.
The plant root system is highly sensitive to nutrient availability and distribution in the soil. For instance, root elongation is inhibited when grown in high nitrate concentrations. To decipher the mechanism underlying the nitrate-induced inhibition of root elongation, the involvement of the plant hormone auxin in nitrate-dependent root elongation of maize was investigated. Root growth, nitrogen and nitrate concentrations, and indole-3-acetic acid (IAA) concentrations in roots and in phloem exudates of maize grown under varying nitrate concentrations were analyzed. Total N and nitrate concentrations in shoots and roots increased and elongation of primary, seminal and crown roots were inhibited with increasing external nitrate from 0.05 to 5 mM. High nitrate-inhibited root growth resulted primarily from the reduced cell elongation and not from changes in meristem length. IAA concentrations in phloem exudates reduced with higher nitrate supply. Inhibition of root growth by high nitrate was closely related to the reduction of IAA levels in roots, especially in the sections close to root tips. Exogenous NAA and IAA restored primary root growth in high nitrate concentrations. It is concluded that the inhibitory effect of high nitrate concentrations on root growth may be partly attributed to the decrease in auxin concentrations of roots.  相似文献   

19.
Brassinolide-induced elongation and auxin   总被引:2,自引:0,他引:2  
Segments from the hook and subhook zone of the stem of 6-day-old etiolated Pisum sativum L. cv. Victory Freezer seedlings were used to study the relationship between brassinolide and auxin in the promotion of elongation. Minor changes in exogenous indole-3-acetic acid or4-chloroindole-3-acetic acid concentration affected the kinetics markedly and the ethylene generator ethephon overcame brassinolide-induced elongation in an antagonistic interaction. Brassinolide-induced elongation was markedly inhibited by low concentrations of the cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile, and diagnostic concentrations of the antiauxin 2-( p -chlorophenoxy) isobutyric acid did not affect brassinolide-induced elongation. As the characteristics of auxin-induced growth are not displayed in brassinolide-induced elongation of the upper stem segment, it is proposed that brassinolide does not depend on auxin as a mediator in the promotion of elongation of younger tissues but that it can interact in a very complex manner with auxin. In the elongation of more mature tissues, and in bending responses, brassinolide probably accelerates auxin effects. When split, the upper stem segment was unusual in its lack of specific response to growth regulators, and the slight relief of epidermal tension.  相似文献   

20.
Development of the root system, appearance of nodules, and relationshipsbetween these two processes were studied on pea (Pisum sativumL., cv. Solara). Plants were grown in growth cabinets for 4weeks on a nitrogen—free nutrient solution inoculatedwith Rhizobium leguminosarum. Plant stages, primary root length,distance from the primary root base to the most distal first-orderlateral root, and distance from the root base to the most distalnodule, were recorded daily. Distribution of nodules along theprimary root and distribution of laterals were recorded by samplingroot systems at two plant stages. Primary root elongation ratewas variable, and declined roughly in conjunction with the exhaustionof seed reserves. First-order laterals appeared acropetallyon the primary root. A linear relationship was found betweenthe length of the apical unbranched zone and root elongationrate, supporting the hypothesis of a constant time lag betweenthe differentiation of first-order lateral's primordia and theiremergence. Decline of the primary root elongation rate was precededby a reduction in density and length of first-order laterals.Nodules appeared not strictly but roughly acropetally on theprimary root. A linear relationship was found between the lengthof the apical zone without nodule and root elongation rate,supporting the hypothesis of a constant time lag between infectionand appearance of a visible nodule. A relationship was foundbetween the presence/absence of nodules on a root segment andthe root elongation rate between infection and appearance ofnodules on the considered root segment. Regulation of both processesby carbohydrate availability, as a causal mechanism, is proposed. Key words: Pisum sativum L, root system, nodules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号