首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of digit formation by activin signalling   总被引:10,自引:0,他引:10  
Major advances in the genetics of vertebrate limb development have been obtained in recent years. However, the nature of the signals which trigger differentiation of the mesoderm to form the limb skeleton remains elusive. Previously, we have obtained evidence for a role of TGFbeta2 in digit formation. Here, we show that activins A and B and/or AB are also signals involved in digit skeletogenesis. activin betaA gene expression correlates with the initiation of digit chondrogenesis while activin betaB is expressed coincidently with the formation of the last phalanx of each digit. Exogenous administration of activins A, B or AB into the interdigital regions induces the formation of extra digits. follistatin, a natural antagonist of activins, is expressed, under the control of activin, peripherally to the digit chondrogenic aggregates marking the prospective tendinous blastemas. Exogenous application of follistatin blocks physiological and activin-induced digit formation. Evidence for a close interaction between activins and other signalling molecules, such as BMPs and FGFs, operating at the distal tip of the limb at these stages is also provided. Chondrogenesis by activins is mediated by BMPs through the regulation of the BMP receptor bmpR-1b and in turn activin expression is upregulated by BMP signalling. In addition, AER hyperactivity secondary to Wnt3A misexpression or local administration of FGFs, inhibits activin expression. In correlation with the restricted expression of activins in the course of digit formation, neither activin nor follistatin treatment affects the development of the skeletal components of the stylopod or zeugopod indicating that the formation of the limb skeleton is regulated by segment-specific chondrogenic signals.  相似文献   

2.
Follistatin, a secreted glycoprotein, has been shown to act as a potent neural inducer during early amphibian development. The function of this protein during embryogenesis in higher vertebrates is unclear, and to further our understanding of its role we have cloned, sequenced, and performed an in-depth expressional analysis of the chick homologue of follistatin. In addition we also describe the expression pattern of activin βA and activin β B, proteins that have previously been shown to be able to interact with follistatin. In this study we show that the expression of follistatin and the activins do not always overlap. Follistatin was first detected in Hensen's node and subsequently in the region described by Spratt [1952] as the neuralising area. In older embryos it was also expressed in a highly dynamic manner in the hind-brain as well as in the somites. We also present evidence that follistatin may have a later role in the resegmentation of the somites. We were unable to detect the expression of activin βA during early embryogenesis, whereas activin βB was first expressed in the extending primitive streak and subsequently in the neural folds. The results from this study are consistent with a role for follistatin in neural induction but suggest it has additional functions unrelated to its inhibitory actions on activins. © 1995 Wiley-Liss, Inc.  相似文献   

3.
4.
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia–reperfusion injury.  相似文献   

5.
Downs JA 《DNA Repair》2008,7(12):1938-2024
The role of chromatin and its modulation during DNA repair has become increasingly understood in recent years. A number of histone modifications that contribute towards the cellular response to DNA damage have been identified, including the acetylation of histone H3 at lysine 56. H3 K56 acetylation occurs normally during S phase, but persists in the presence of DNA damage. In the absence of this modification, cellular survival following DNA damage is impaired. Two recent reports provide additional insights into how H3 K56 acetylation functions in DNA damage responses. In particular, this modification appears to be important for both normal replication-coupled nucleosome assembly as well as nucleosome assembly at sites of DNA damage following repair.  相似文献   

6.
Cutaneous wound repair is a tightly regulated and dynamic process involving blood clotting, inflammation, formation of new tissue, and tissue remodeling. Gene expression profiling of mouse and human wounds as well as first proteomics studies have identified a large number of genes and proteins that are up- or downregulated by skin injury, and some of them have been functionally characterized in animal models of wound repair. Among the key regulators of wound repair are growth factors, which control migration, proliferation, differentiation and survival of cells at different stages of the healing process. This review summarizes the results of functional studies performed in mammals that have identified important roles of receptor tyrosine kinases and their ligands in wound repair.  相似文献   

7.
8.
Activins and their receptors in female reproduction.   总被引:6,自引:0,他引:6  
Activins are growth and differentiation factors belonging to the transforming growth factor-beta superfamily. They are dimeric proteins consisting of two inhibin beta subunits. The structure of activins is highly conserved during vertebrate evolution. Activins signal through type I and type II receptor proteins, both of which are serine/threonine kinases. Subsequently, downstream signals such as Smad proteins are phosphorylated. Activins and their receptors are present in many tissues of mammals and lower vertebrates where they function as autocrine and (or) paracrine regulators of a variety of physiological processes, including reproduction. In the hypothalamus, activins are thought to stimulate the release of gonadotropin-releasing hormone. In the pituitary, activins increase follicle-stimulating hormone secretion and up-regulate gonadotropin-releasing hormone receptor expression. In the ovaries of vertebrates, activins are expressed predominantly in the follicular layer of the oocyte where they regulate processes such as folliculogenesis, steroid hormone production, and oocyte maturation. During pregnancy, activin-A is also involved in the regulation of placental functions. This review provides a brief overview of activins and their receptors, including their structures, expression, and functions in the female reproductive axis as well as in the placenta. Special effort is made to compare activins and their receptors in different vertebrates.  相似文献   

9.
Abstract

DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer.  相似文献   

10.
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.  相似文献   

11.
Isolation and characterization of native activin B.   总被引:4,自引:0,他引:4  
To examine whether activin binds to follistatin, an activin-binding protein, to form a complex in vivo, we attempted to purify activin-follistatin complex from porcine follicular fluid. Our results thus obtained indicated that almost equimolar amounts of activins A, AB, and B are present as a complex with follistatin in the follicular fluid. Reverse-phase high performance liquid chromatography of the purified complex yielded follistatin and activins A, AB, and B. The activity of the purified activin B was found to be significantly lower than those of other activins in various assay systems such as stimulation of follicle-stimulating hormone secretion, induction of erythrodifferentiation, and potentiation of expression of gonadotropin receptors on ovarian cells. Moreover, binding of 125I-activin A to erythroleukemic cells which are activin-responsive was competed by activin B with approximately 10-fold lower potency compared with other activins. In contrast to these results, activin B was proved to have a potent Xenopus mesoderm-inducing activity, comparable with that of other activins. This indicates that, unlike activins A and AB, activin B can only elicit mesoderm-inducing activity and cannot function in other biological systems, suggesting a specific role of activin B in early development and unknown biological functions.  相似文献   

12.
The transforming growth factor-β (TGF-β) superfamily is a multifunctional, contextually acting family of cytokines that participate in the regulation of development, disease and tissue repair in the nervous system. The TGF-β family is composed of several members, including TGF-βs, bone morphogenetic proteins (BMPs) and activins. In this review, we discuss recent findings that suggest TGF-β function as important pleiotropic modulators of nociceptive processing both physiologically and under pathological painful conditions. The strategy of increasing TGF-β signaling by deleting “BMP and activin membrane-bound inhibitor” (BAMBI), a TGF-β pseudoreceptor, has demonstrated the inhibitory role of TGF-β signaling pathways in normal nociception and in inflammatory and neuropathic pain models. In particular, strong evidence suggests that TGF-β1 is a relevant mediator of nociception and has protective effects against the development of chronic neuropathic pain by inhibiting the neuroimmune responses of neurons and glia and promoting the expression of endogenous opioids within the spinal cord. In the peripheral nervous system, activins and BMPs function as target-derived differentiation factors that determine and maintain the phenotypic identity and circuit assembly of peptidergic nociceptors. In this context, activin is involved in the complex events of neuroinflammation that modulate the expression of pain during wound healing. These findings have provided new insights into the physiopathology of nociception. Moreover, specific members of the TGF-β family and their signaling effectors and modulator molecules may be promising molecular targets for novel therapeutic agents for pain management.  相似文献   

13.
Activin A is a pluripotent growth factor with important roles in development, erythropoiesis and the local regulation of many tissues. At the post-translational level, the amount of activin A produced by cells may be modulated through the diversion of activin A subunits into the formation of inhibin or other activins containing heterodimeric forms. Once assembled, activin interacts with various low- and high-affinity binding proteins, such as follistatin and alpha(2)-macroglobulin, that have consequences for receptor availability. In common with other TGFbeta family members, activin signals through pairs of type I and II receptor kinases and the Smad intracellular signalling cascade. Other checkpoints have been identified such as the recently identified pseudoreceptor, BAMBI. These emerging findings point to a tightly coordinated regulation of the exposure of a cell or tissue to activin, consistent with the low amounts of this potent factor that are necessary to modulate cellular responses.  相似文献   

14.
15.
Activins and inhibins, members of the TGF-β superfamily, are growth and differentiation factors involved in the regulation of several biological processes, including reproduction, development, and fertility. Previous studies have shown that the activin-βA subunit plays a pivotal role in prostate development. Activin-A inhibits branching morphogenesis in the developing prostate, and its expression is associated with increased apoptosis in the adult prostate. Follistatin, a structurally unrelated protein to activins, is an antagonist of activin-A. A balance between endogenous activin-A and follistatin is required to maintain prostatic branching morphogenesis. Deregulation of this balance leads to branching inhibition or excessive branching and increased maturation of the stroma surrounding the differentiating epithelial ducts. Recent work identified another member of the TGF-β superfamily, the activin-βC subunit, as a novel antagonist of activin-A. Over-expression of activin-C (βCC) alters prostate homeostasis, by interfering with the activin-A signaling. The current study characterized the spatiotemporal localization of activin-A, activin-C and follistatin in the adult and developing mouse prostate using immunohistochemical analysis. Results showed activin-C and follistatin are differentially expressed during prostate development and suggested that the antagonistic property of follistatin is secondary to the action of activin-C. In conclusion, the present study provides evidence to support a role of activin-C in prostate development and provides new insights in the spatiotemporal localization of activins and their antagonists during mouse prostate development.  相似文献   

16.
17.
Accumulation of mast cells (MCs) in tumours was described by Ehrlich in his doctoral thesis. Since this early account, ample evidence has been provided highlighting participation of MCs to the inflammatory reaction that occurs in many clinical and experimental tumour settings. MCs are bone marrow-derived tissue-homing leukocytes that are endowed with a panoply of releasable mediators and surface receptors. These cells actively take part to innate and acquired immune reactions as well as to a series of fundamental functions such as angiogenesis, tissue repair, and tissue remodelling. The involvement of MCs in tumour development is debated. Although some evidence suggests that MCs can promote tumourigenesis and tumour progression, there are some clinical sets as well as experimental tumour models in which MCs seem to have functions that favour the host. One of the major issues linking MCs to cancer is the ability of these cells to release potent pro-angiogenic factors. This review will focus on the most recent acquisitions about this intriguing field of research. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

18.
Failure to reactivate either stalled or collapsed replication forks is a source of genomic instability in both prokaryotes and eukaryotes. In prokaryotes, dedicated fork repair systems that involve both recombination and replication proteins have been identified genetically and characterized biochemically. Replication conflicts are solved through several pathways, some of which require recombination and some of which operate directly at the stalled fork. Some recent biochemical observations support models of direct fork repair in which the removal of the blocking template lesion is not always required for replication restart.  相似文献   

19.
A growing body of evidence indicates that the epithelial-specific growth factors keratinocyte growth factor (KGF), fibroblast growth factor (FGF)-10, and hepatocyte growth factor (HGF) play important roles in lung development, lung inflammation, and repair. The therapeutic potential of these growth factors in lung disease has yet to be fully explored. KGF has been best studied and has impressive protective effects against a wide variety of injurious stimuli when given as a pretreatment in animal models. Whether this protective effect could translate to a treatment effect in humans with acute lung injury needs to be investigated. FGF-10 and HGF may also have therapeutic potential, but more extensive studies in animal models are needed. Because HGF lacks true epithelial specificity, it may have less potential than KGF and FGF-10 as a targeted therapy to facilitate lung epithelial repair. Regardless of their therapeutic potential, studies of the unique roles played by these growth factors in the pathogenesis and the resolution of acute lung injury and other lung diseases will continue to enhance our understanding of the complex pathophysiology of inflammation and repair in the lung.  相似文献   

20.
A phylogenomic study of DNA repair genes, proteins, and processes   总被引:31,自引:0,他引:31  
The ability to recognize and repair abnormal DNA structures is common to all forms of life. Studies in a variety of species have identified an incredible diversity of DNA repair pathways. Documenting and characterizing the similarities and differences in repair between species has important value for understanding the origin and evolution of repair pathways as well as for improving our understanding of phenotypes affected by repair (e.g., mutation rates, lifespan, tumorigenesis, survival in extreme environments). Unfortunately, while repair processes have been studied in quite a few species, the ecological and evolutionary diversity of such studies has been limited. Complete genome sequences can provide potential sources of new information about repair in different species. In this paper, we present a global comparative analysis of DNA repair proteins and processes based upon the analysis of available complete genome sequences. We use a new form of analysis that combines genome sequence information and phylogenetic studies into a composite analysis we refer to as phylogenomics. We use this phylogenomic analysis to study the evolution of repair proteins and processes and to predict the repair phenotypes of those species for which we now know the complete genome sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号