首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic Analysis of Flagellar Mutants in Escherichia coli   总被引:37,自引:29,他引:8       下载免费PDF全文
Flagellar mutants in Escherichia coli were obtained by selection for resistance to the flagellotropic phage chi. F elements covering various regions of the E. coli genome were then constructed, and, on the basis of the ability of these elements to restore flagellar function, the mutations were assigned to three regions of the E. coli chromosome. Region I is between trp and gal; region II is between uvrC and aroD; and region III is between his and uvrC. F elements carrying flagellar mutations were constructed. Stable merodiploid strains with a flagellar defect on the exogenote and another on the endogenote were then prepared. These merodiploids yielded information on the complementation behavior of mutations in a given region. Region III was shown to include at least six cistrons, A, B, C, D, E, and F. Region II was shown to include at least four cistrons, G, H, I, and J. Examination of the phenotypes of the mutants revealed that those with lesions in cistron E of region III produce "polyhooks" and lesions in cistron F of region III result in loss of ability to produce flagellin. Mutants with lesions in cistron J of region II were entirely paralyzed (mot) mutants. Genetic analysis of flagellar mutations in region III suggested that the mutations located in cistrons A, B, C, and E are closely linked and mutations in cistrons D and F are closely linked.  相似文献   

2.
Slow motile mutant in Salmonella typhimurium   总被引:2,自引:1,他引:1       下载免费PDF全文
Enomoto, Masatoshi (National Institute of Genetics, Misima, Japan). Slow motile mutant in Salmonella typhimurium. J. Bacteriol. 90:1696-1702. 1965.-A slow motile mutant, SJ399, was isolated from a wild-type strain of Salmonella typhimurium TM2. The mutant was as motile as the wild type in broth culture at 37 C. However, on semisolid medium it produced a much narrower swarming band than TM2. The motility of this mutant was hindered by the viscosity of semisolid medium. H antigenicity and morphological characters of flagella of the mutant were the same as those of the wild type. The motility phage, chi, responded differently to SJ399 and the wild type. Plaques of SJ399 were small and cloudy, whereas on the wild type they were large and clear. The efficiency of plating on SJ399 was 0.36 as compared with 1 with the wild type. Stained preparations revealed that the mutant had about one-third the number of flagella of the wild type. The reduction of the number of flagella also was ascertained by biochemical measurement of flagellar protein which was purified after deflagellation from cells. The content of flagellin in SJ399 was about 32% of that of the wild type. Phage P22-mediated transductions from SJ399 to nonflagellated (fla(-)) and paralyzed (mot(-)) mutants showed that the mutant SJ399 complements seven fla(-) and three mot(-) strains which are representative mutants of flagellation and motility cistrons, respectively. The mutation site of SJ399 was cotransduced with both motA and B cistrons. The two point cross tests between SJ399 and mot mutants revealed that the mutation site of SJ399 is located in the motB cistron. The insertion of the genetic region containing the mutation site of SJ399 to the motB cistron is discussed in relation to intracistronic complementation.  相似文献   

3.
M Tsuda  T Iino 《Journal of bacteriology》1983,153(2):1008-1017
The flagellar genes of Pseudomonas aeruginosa PAO cluster on the chromosome at two distinct regions, region I and region II. The order of the flagellar cistrons in this organism was established by using transducing phage G101 and plasmids FP5 and R68.45. A method to insert transposon Tn501 near the fla genes was devised. We obtained two strains in which Tn501 was inserted at sites close to the flagellar cistrons in region II. We isolated Fla mutants in which the chromosomal segment between the two Tn501 insertion sites was deleted. Using Tn501-encoded mercury resistance as an outside marker, we determined the order of 9 of the 11 flagellar cistrons in region II as follows: puuF-region I-flaG-flaC-flaI-flaH-flaD-flaB-flaA-flaF-flaE-pur-67. By using phage G101-mediated transduction, the mutation converting monoflagellated bacteria into the multiflagellated (mfl) form was closely linked to the five fla cistrons in region I. Using mfl as an outside marker, we determined the order of the five cistrons as follows: puuF-flaV-flaZ-flaW-flaX-flaY-region II. The mfl mutation was shown to be either located within the flaV cistron or linked very closely to this cistron. No linkage was observed in transductions between any of the fla cistrons in region I and any of the fla cistrons in region II.  相似文献   

4.
5.
The flaAII.2, flaQ, and flaN genes of Salmonella typhimurium are important for assembly, rotation, and counterclockwise-clockwise switching of the flagellar motor. Paralyzed and nonchemotactic mutants were subjected to selection pressure for partial acquisition of motility and chemotaxis, and the suppressor mutations of the resulting pseudorevertants were mapped and isolated. Many of the intergenic suppressor mutations were in one of the other two genes. Others were in genes for cytoplasmic components of the chemotaxis system, notably cheY and cheZ; one of the mutations was found in the cheA gene and one in a motility gene, motB. Suppression among the three fla genes was allele specific, and many of the pseudorevertants were either cold sensitive or heat sensitive. We conclude that the FlaAII.2, FlaQ, and FlaN proteins form a complex which determines the rotational sense, either counterclockwise or clockwise, of the motor and also participates in the conversion of proton energy into mechanical work of rotation. This switch complex is probably mounted to the base of the flagellar basal body and, via binding of the CheY and CheZ proteins, receives sensory information and uses it to control flagellar operation.  相似文献   

6.
Hybrid Escherichia coli ColE1 plasmids carrying the genes for motility (mot) and chemotaxis (che) were transferred to a minicell-producing strain. The mot and che genes on the hybrid plasmid directed protein synthesis in minicells. Polypeptides synthesized in minicells were identical to the products of the motA, motB, cheA, cheW, cheM, cheX, cheB, cheY, and cheZ genes previously identified by using hybrid lambda and ultraviolet-irradiated host cells (Silverman and Simon, J. Bacteriol. 130:1317-1325, 1977), thus confirming these gene product assignments. The products of some che genes (cheA and cheM) appeared as more than one band on polyacrylamide gel electrophoresis, but analysis of partial peptide digests of these polypeptides suggested that the multiple forms were coded for by a single gene. Measurement of the physical length of the hybrid plasmids allowed an estimate of the amount of coding capacity of the cloned deoxyribonucleic acid, which was devoted to the synthesis of the mot and che gene products. These estimates were also consistent with the hypothesis that the multiple polypeptides corresponding to cheA and cheM were the products of single genes.  相似文献   

7.
8.
Incomplete flagellar structures were detected in osmotically shocked cells or membrane-associated fraction of many nonflagellate mutants of Salmonella typhimurium by electron microscopy. The predominant types of these structures in the mutants were cistron specific. The incomplete basal bodies were detected in flaFI, flaFIV, flaFVIII, and flaFIX mutants, the structure homologous to a basal body in flaFV mutants, the polyhook-basal body complex in flaR mutants, and the hook-basal body complex in flaL and flaU mutants. No structures homologous to flagellar bases or their parts were detected in the early-fla group nonflagellate mutants of flaAI, flaAII, flaAIII, flaB, flaC, flaD, flaE, flaFII, flaFIII, flaFVI, flaFVII, flaFX, flaK, and flaM. From these observations, a process of flagellar morphogenesis was postulated. The functions of the early-fla group are essential to the formation of S ring-M ring-rod complexes bound to the membrane. The completion of basal bodies requires succeeding functions of flaFI, flaFIV, flaFVIII, and flaFIX. Next, the formation of hooks attached to basal bodies proceeds by the function of flaFV and by flaR, which controls the hook length. Flagellar filaments appear at the tips of hooks because of the functions of flaL, flaU, and flagellin genes.  相似文献   

9.
Flagellar proteins controlling motility and chemotaxis in Escherichia coli were selectively labeled in vivo with [35S]methionine. This distribution of these proteins in subcellular fractions was examined by sodium dodecyl sulfatepolyacrylamide gel electrophoresis and autoradiography. The motA, motB, cheM, and cheD gene products were found to be confined exclusively to the inner cytoplasmic membrane fraction, whereas the cheY, cheW, and cheA (66,000 daltons) polypeptides appeared only in the soluble cytoplasmic fraction. The cheB, cheX, cheZ, and cheA (76,000 daltons) proteins, however, were distributed in both the cytoplasm and the inner membrane fractions. The hag gene product (flagellin) was the only flagellar protein examined that copurified with the outer lipopolysaccharide membrane. Differences in the intracellular locations of the che and mot gene prodcuts presumably reflect the functional attributes of these components.  相似文献   

10.
Motile but generally nonchemotatic (che) mutants of Escherichia coli were isolated by a simple screening method. A total of 172 independent mutants were examined, and four genes were defined on the basis of mapping and complemenvestigated by determining their null phenotypes with nonsense or bacteriophage Mu-induced mutations. The cheA and cheB products were essential in producing changes of swimming direction and flagellar rotation. The checC product appeared to be an essential component of the flagellum; however, specific mutational alterations of this component allowed flagellar assembly but prevented directional changes in swimming. Since some cheB mutants changed directions incessantly, this gene product may also serve to control the direction of flagellar rotation in response to chemoreceptor signals. Thus most or all of the common elements in the signalling process were involved in the generation and regulation of changes in the direction of flagellar rotation.  相似文献   

11.
12.
The spoIVC locus of Bacillus subtilis was analysed. Fourteen spoIVC mutants isolated following nitrosoguanidine mutagenesis were used along with two previously characterized spoIVC mutants to construct a fine structure genetic map of the locus. The recombination index (RI) measured between extreme mutations was 0.26; no recombination could be detected between four of the mutations. Complementation analysis showed that all the mutations fall into two cistrons. The RI between extreme mutations in cistron A was about 0.17 and that between extreme mutations in cistron B was about 0.05. In respect of biochemical markers, the spoIVC mutations all produced similar phenotypes, irrespective of their location. However, in both cistrons oligosporogenous and asporogenous mutations mapped close together.  相似文献   

13.
We have used Escherichia coli as a model system to investigate the initiation of biofilm formation. Here, we demonstrate that E. coli forms biofilms on multiple abiotic surfaces in a nutrient-dependent fashion. In addition, we have isolated insertion mutations that render this organism defective in biofilm formation. One-half of these mutations was found to perturb normal flagellar function. Using defined fli , flh , mot and che alleles, we show that motility, but not chemotaxis, is critical for normal biofilm formation. Microscopic analyses of these mutants suggest that motility is important for both initial interaction with the surface and for movement along the surface. In addition, we present evidence that type I pili (harbouring the mannose-specific adhesin, FimH) are required for initial surface attachment and that mannose inhibits normal attachment. In light of the observations presented here, a working model is discussed that describes the roles of both motility and type I pili in biofilm development.  相似文献   

14.
15.
Pseudorevertants (second-site suppressor mutants) were isolated from a set of parental mutants of Salmonella with defects in the flagellar switch genes fliG and fliM. Most of the suppressing mutations lay in flagellar region IIIb of the chromosome. One fliG mutant, SJW2811, gave rise to a large number of suppressor mutations in the motility genes motA and motB, which are in flagellar region II. SJW2811, which has a three-amino-acid deletion (delta Pro-Ala-Ala) at positions 169 to 171 of FliG, had an extreme clockwise motor bias that produced inverse smooth swimming (i.e., swimming by means of clockwise rotation of a hydrodynamically induced right-handed helical bundle), and formed Mot(-)-like colonies on semisolid medium. Unlike previously reported inverse-swimming mutants, it did not show a chemotactic response to serine, and it remained inverse even in a delta che background; thus, its switch is locked in the clockwise state. The location of the mutation further underscores the conclusion from a previous study of spontaneous missense mutants (V. M. Irikura, M. Kihara, S. Yamaguchi, H. Sockett, and R. M. Macnab, J. Bacteriol. 175:802-810, 1993) that a relatively localized region in the central part of the FliG sequence is critically important for switching. All of the second-site mutations in motA and motB caused some impairment of motility, both in the pseudorevertants and in a wild-type fliG background. The mechanism of suppression of the fliG mutation by the mot mutations is complex, involving destabilization of the right-handed flagellar bundle as a result of reduced motor speed. The mutations in the MotA and MotB sequences were clustered to a considerable degree as follows: in transmembrane helices 3 and 4 of MotA and the sole transmembrane helix of MotB, at helix-membrane interfaces, in the cytoplasmic domains of MotA, and in the vicinity of the peptidoglycan binding region of the periplasmic domain of MotB. The potential importance of Lys28 and Asp33 of the MotB sequence for proton delivery to the site of torque generation is discussed.  相似文献   

16.
Transfer-defective mutants of the 10.4-kb Tra 2/Tra 3 region of RP1 were identified by their ability to be complemented by clones carrying all or part of this region. The respective mutations occurred in six cistrons whose order (traA, B, E, R, P, Q) and location were determined by deletion and insertion mapping. The cistrons occupy a minimum of 5.5 kb with the most distal, traA, spanning the 28.0-kb map position and traR the KpnI site at map position 24.1 kb. Each cistron is expressed independently, as Tn5 or Tn504 insertions in any one cistron do not affect the other five. The phenotypes controlled by each cistron suggest that all contribute to pilus biosynthesis/function while three (traB, R, and P) also contribute to surface exclusion. Given the occurrence of tra cistrons in the "silent" region between Tra 2 and Tra 3 we propose that the epithet "Tra 2" should be used to describe this entire region.  相似文献   

17.
18.
Salmonella typhimurium mutants generally defective in chemotaxis.   总被引:21,自引:16,他引:5       下载免费PDF全文
The mutations of eight chemotaxis-deficient strains of Salmonella typhimurium, including five new mutants in strain LT2, were mapped by P22 transduction in relation to various fla mot deletions in S. abortus-equi. Seven recessive che mutations mapped between motB and flaC: three, all nontumbling, the che region I, adjacent to motB, and four, including one ever-tumbling, in che region II, adjacent to flaC. Mutant che-107, never-tumbling and dominant to wild type, mapped at flaAII, other mutations of which cause either absence of flagella or lack of locomotor function. We surmise that gene flaAII specifies a protein that polymerizes to form an essential component of the basal apparatus (so that absence of gene product prevents formation of flagela); that a component built up from certain mutationally altered proteins cannot transmit (or generate) active rotation of the hook and flagellum, and so causes the Mot (paralysis) phenyotype; and that a component built up from protein with the che-107 alteration permits only counterclockwise rotation, so that the tumble, normally produced by transient clockwise rotation, cannot be effected.  相似文献   

19.
We used an improved procedure to analyze the intraflagellar transport (IFT) of protein particles in Chlamydomonas and found that the frequency of the particles, not only the velocity, changes at each end of the flagella. Thus, particles undergo structural remodeling at both flagellar locations. Therefore, we propose that the IFT consists of a cycle composed of at least four phases: phases II and IV, in which particles undergo anterograde and retrograde transport, respectively, and phases I and III, in which particles are remodeled/exchanged at the proximal and distal end of the flagellum, respectively. In support of our model, we also identified 13 distinct mutants of flagellar assembly (fla), each defective in one or two consecutive phases of the IFT cycle. The phase I-II mutant fla10-1 revealed that cytoplasmic dynein requires the function of kinesin II to participate in the cycle. Phase I and II mutants accumulate complex A, a particle component, near the basal bodies. In contrast, phase III and IV mutants accumulate complex B, a second particle component, in flagellar bulges. Thus, fla mutations affect the function of each complex at different phases of the cycle.  相似文献   

20.
Biosynthesis of Amino Sugars by Pseudomonas saccharophila   总被引:11,自引:8,他引:3       下载免费PDF全文
In Escherichia coli, the following genes are involved in motility and chemotaxis. The H gene is the structural gene for flagellin. Mutation in the mot gene results in paralysis of the flagella, and mutation in the fla genes leads to an absence of flagella. The cheA, cheB, and cheC genes are required for chemotaxis. The chromosomal location of these genes has now been determined. The majority are clustered in a small region around uvrC, between his and aroD, in the order his-cheC-H-uvrC-mot-cheA-cheB-aroD. The fla genes are located in the same region, and also between trp and gal. The results indicate that many of the genes are homologous to those which have been studied in Salmonella typhimurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号