首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired synthetase function of the mitochondrial ATPase induced by mutation in the ATP22 gene results in decreased accumulation of inorganic polyphosphates in the stationary growth phase of the yeast Saccharomyces cerevisiae grown on glucose. The content of polyphosphates in the mutant strain in this phase is 2.5 times lower than in the parent strain. This difference is most pronounced for the acid-soluble polyP1 fraction and the alkali-soluble polyP3 fraction. Polyphosphate chain length in mutant cells is less than in the parent cells in both the acid-soluble polyP1 and in the salt-soluble polyP2 fractions. The mutation had no effect on polyphosphates content in the mitochondria.  相似文献   

2.
When glycerol was used to induce myxospore formation in Myxococcu xanthus in the presence of 32Pi, the label was incorporated into a variety of acid-soluble compounds. Incorporation into ribonucleotides was approximately fivefold greater than in vegetative cells or noninducible mutants grown in glycerol. The label was also incorporated into some unknown compounds and material tentatively identified as guanosine tetraphosphate. Marked accumulation into polyphosphates, which were present mainly in culture supernatants, occurred relatively late during myxospore formation. The kinetics of accumulation of some of these compounds and their distribution into acid-soluble cell extracts and culture supernatants are described and compared with those in vegetative cells and noninducible mutants.  相似文献   

3.
The inactivation of the PPX1 and PPN1 genes, which encode the major enzymes of polyphosphate degradation (exopolyphosphatase and endopolyphosphatase, respectively), was found to exert different effects on the content of different polyphosphates in the yeast Saccharomyces cerevisiae. The content of relatively low-molecular-weight acid-soluble polyphosphates in mutant yeast strains is inversely proportional to the exopolyphosphatase activity of the cytosol. At the same time, the mutation of these genes exerts no effect on salt-soluble polyphosphates. The content of high-molecular-weight alkali-soluble polyphosphates increases twofold in a mutant with inactivated genes of both exopolyphosphatase and endopolyphosphatase. The data obtained confirm the earlier suggestion that the metabolic pathways of particular polyphosphates in yeasts are different.  相似文献   

4.
The inactivation of the PPX1 and PPN1 genes, which encode the major enzymes of polyphosphate degradation (exopolyphosphatase and endopolyphosphatase, respectively), was found to exert different effects on the content of different polyphosphates in the yeast Saccharomyces cerevisiae. The content of relatively low-molecular-weight acid-soluble polyphosphates in mutant yeast strains is inversely proportional to the exopolyphosphatase activity of the cytosol. At the same time, the mutation of these genes exerts no effect on salt-soluble polyphosphates. The content of high-molecular-weight alkali-soluble polyphosphates increases twofold in a mutant with inactivated genes of both exopolyphosphatase and endopolyphosphatase. The data obtained confirm the earlier suggestion that the metabolic pathways of particular polyphosphates in yeasts are different.  相似文献   

5.
In the cells of hybrid yeast strain Saccharomyces N.C.Y.C. 644 SU3 (Karlsberg collection), a large amount of pyrophosphate (30–300 mol/g of dry weight) accumulates whatever the aeration conditions and the content of glucose in the medium. The content of pyrophosphate is 10–1000 times higher than that of ATP. At the early and mid-exponential growth phases two maxima of pyrophosphate accumulation are observable. The periods of maximal pyrophosphate accumulation in yeast coincide with those of the minimal content of polymeric acid-soluble polyphosphates and intense budding. In the light of the data obtained, the question is discussed as to the relationship between the metabolism of pyrophosphates and acid-soluble polyphosphates in yeast.  相似文献   

6.
A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.  相似文献   

7.
Cellobiose lipid B, a natural fungicide produced by the yeast Pseudozyma fusiformata, induces the leakage of K+ and ATP from cells of Saccharomyces cerevisiae. The presence of glucose decreases the effective concentration of cellobiose lipid B. The concentration of cellobiose lipid B was selected that results in a high rate of K+ leakage and a five- to sevenfold decrease in the intracellular ATP content, while the accumulation of acid-soluble polyphosphates decreased only by half. These results indicate the possibility of synthesis of these polymers independently of the ATP level and of the ion gradient on the plasma membrane.  相似文献   

8.
Using uniformly 32P-labeled Chlorella cells as material, compositionof acid-soluble inorganic polyphosphates was studied by paperchromatography and ion-exchange chromatography. 2.By the paper chromatographic analysis it was found that theacid-soluble polyphosphates consisted of highly condensed polyphosphates.Ring-forming tri- and tetrametaphosphates, pyrophosphate andtripolyphosphate were not detected in the acid-soluble fractionof the algal cells. 3.By an ion-exchange chromatography with the use of increasingconcentrations of KCl-solution as eluant, it was found thatthe acid-soluble polyphosphate was a mixture of polyphosphateswith a variety of condensation number (n-values). Polyphosphatesof the n-values between 3 and 15 were only 20% of the totalacid-soluble polyphosphate. The majority of the other polyphospateshad greater n-values which was eluted with 0.5–1.0 M KCl. (Received March 2, 1964; )  相似文献   

9.
Cellobiose lipid B, a natural fungicide produced by the yeast Pseudozyma fusiformata, induces the leakage of K+ and ATP from cells of Saccharomyces cerevisiae. The presence of glucose decreases the effective concentration of cellobiose lipid B. The concentration of cellobiose lipid B was selected that results in a high rate of K+ leakage and a five-to sevenfold decrease in the intracellular ATP content, while the accumulation of acid-soluble polyphosphates decreased only by half. These results indicate the possibility of synthesis of these polymers which is independent of the ATP level and of the ion gradient on plasma membranes.  相似文献   

10.
It was reported previously that Ogur and Rosen’s method for the determination of nucleic acids should be applied to fresh or durable yeast, after a freezing pretreatment with dry ice and ether. The fractionation of nucleic acids from the frozen yeast should precede with a complete elimination of alcohol-ether-soluble and acid-soluble compounds. It has been found that in Ogur and Rosen’s method, the elimination of the former compounds is complete, but the removal of acid-soluble compounds is unsatisfactory in the case of yeast.

In order to improve this defect, the best conditions for the elution of acid-soluble compounds have been investigated in detail, and it has been found that water is the most suitable solvent.  相似文献   

11.
Physiological aspects of phosphate utilization by the blue-green alga Plectonema boryanum were studied. It was found that the external phosphate concentration influenced the distribution of phosphorus-containing compounds in the cell. Culturing the alga in concentrations of 10, 100, and 1000 mg PO4/l resulted in increases in the level of acid-soluble and acid-insoluble polyphosphates. The values reported for 100 and 1000 mg PO4/l were the same, indicating that the cells were able to assimilate and utilize only fixed amounts of phosphates. The total phosphorus value for these cells was calculated to be 6.5 μg P per 106 cells. Culturing the alga in 1 mg PO4/l led to a decrease in phosphate concentration of all cell fractions. Cells grown in the absence of phosphate for 5 days had total cell phosphorus levels of 0.76 μg P per 106 cells. Cells in culture for two months or longer were found to have total cell phosphorus levels of 0.73 μg P per 106 cells. This was determined to be the minimum cell phosphorus level limiting growth. Transfer of cells from either culture condition to a medium containing phosphate led to an “overplus” phenomenon. This overplus phenomenon was characterized by increases in all cellular phosphorus fractions. The most dramatic increase was found in both the acid-soluble and acid-insoluble polyphosphates. These fractions often increased by more than an order of magnitude. The greatest phosphate uptake occurred within 1 hr of transfer of phosphate-starved cells into a medium containing a known amount of phosphate and is essentially complete at 4 hr. The total cell phosphorus levels for uptake never increased beyond 18.9 μg per 106 cells.  相似文献   

12.
Under appropriate experimental conditions toluidine blue is bound to the yeast cell surface, without penetrating into the cells. Based on experimental observations it is highly probable that the dye is bound to polyphosphates, localized outside the plasma membrane. The probable localization of polyphosphates outside the plasma membrane is important in the context of the proposed involvement of polyphosphates in glucose transport in yeast.  相似文献   

13.
A problem for inositol signaling is to understand the significance of the kinases that convert inositol hexakisphosphate to diphosphoinositol polyphosphates. This kinase activity is catalyzed by Kcs1p in the yeast Saccharomyces cerevisiae. A kcs1Delta yeast strain that was transformed with a specifically "kinase-dead" kcs1p mutant did not synthesize diphosphoinositol polyphosphates, and the cells contained a fragmented vacuolar compartment. Biogenesis of the yeast vacuole also required another functional domain in Kcs1p, which contains two leucine heptad repeats. The kinase activity of Kcs1p was also found to sustain cell growth and integrity of the cell wall and to promote adaptive responses to salt stress. Thus, the synthesis of diphosphoinositol polyphosphates has wide ranging physiological significance. Furthermore, we showed that these phenotypic responses to Kcs1p deletion also arise when synthesis of precursor material for the diphosphoinositol polyphosphates is blocked in arg82Delta cells. This metabolic block was partially bypassed, and the phenotype was partially rescued, when Kcs1p was overexpressed in the arg82Delta cells. This was due, in part, to the ability of Kcs1p to phosphorylate a wider range of substrates than previously appreciated. Our results show that diphosphoinositol polyphosphate synthase activity is essential for biogenesis of the yeast vacuole and the cell's responses to certain environmental stresses.  相似文献   

14.
After re-inoculation of the yeast Saccharomyces cerevisiae from phosphate-deficient to complete medium, the total content of polyphosphates increased tenfold during 2 h (hypercompensation), but the content of certain fractions increased differently. The content of acid-soluble polyphosphate increased to the maximal extent. The ratio of the activities of two exopolyphosphatases also changed in the cytosol. Activity of a low molecular weight exopolyphosphatase (40 kD) decreased almost twice, whereas activity of a high molecular weight exopolyphosphatase (830 kD) increased tenfold. Cycloheximide blocks the increase in activity of high molecular weight exopolyphosphatase and hence, under these conditions the latter is synthesized de novo. Inhibitors of energy metabolism and cycloheximide, an inhibitor of protein synthesis, differently influence accumulation of certain polyphosphate fractions under hypercompensation conditions. The effect of iodoacetamide, an inhibitor of glycolysis, on any fraction is negligible, while cycloheximide suppresses accumulation of only polyP4 fraction associated with the cell envelope and bafilomycin A1, an inhibitor of vacuolar H+-ATPase, suppresses accumulation of polyP3 fraction. The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) to variable extent inhibits accumulation of all the fractions. Analysis of the effect of inhibitors on accumulation of polyphosphates under hypercompensation conditions confirms various localization, heterogeneity, and multiplicity of the routes of biosynthesis of certain fractions of these macroergic phosphorus compounds and also suggests interrelation between their biosynthesis and the gradient of H+ electrochemical potential.  相似文献   

15.
Soluble inositol polyphosphates are implicated in the regulation of many important cellular functions. This protocol to extract and separate inositol polyphosphates from Saccharomyces cerevisiae is divided into three steps: labeling of yeast, extraction of soluble inositol polyphosphates and chromatographic separation. Yeast cells are incubated with tritiated inositol, which is taken up and metabolized into different phosphorylated forms. Soluble inositol polyphosphates are then acid-extracted and fractionated by high-performance liquid chromatography. The radioactivity of each fraction is determined by scintillation counting. This highly sensitive and reproducible method allows the accurate detection of subtle changes in the inositol polyphosphate profile and takes less than 48 h. It can easily be applied to other systems and we have included two adaptations of the protocol, one optimized for mammalian cells and the other for Arabidopsis thaliana.  相似文献   

16.
Diadenosine polyphosphates are now considered a novel class of endogenous paracrine signal compounds. The putative role of these compounds in pathogenesis of myocardial infarction was proposed, since the concentration of diadenosine polyphosphates increases in the cardiac tissue following the ischemic lesion and myocardial necrosis. Therefore, possible effects of diadenosine polyphosphates on cardiac electrical activity and their ionic mechanisms are of considerable interest.  相似文献   

17.
The addition of casamino acids to a log. phase culture of a prototrophic yeast strain under conditions in which their catabolism is repressed caused stimulation in growth rate. The neutral amino acids and arginine were the principal contributors to this stimulation effect. An early response of the cells to the addition of amino acids was the accumulation of low molecular weight polyphosphates. This accumulation was shown to correlate to the basicity of a given amino acid rather than to its effect on growth rate. A role for the polyphosphates in intracellular buffering is therefore suggested.  相似文献   

18.
The yeast Saccharomyces cerevisiae was shown to have a high potential as a phosphate-accumulating organism under growth suppression by nitrogen limitation. The cells took up over 40% of phosphate from the medium containing 30 mM glucose and 5 mM potassium phosphate and over 80% of phosphate on addition of 5 mM magnesium sulfate. The major part of accumulated Pi was reserved as polyphosphates. The content of polyphosphates was ∼57 and ∼75% of the phosphate accumulated by the cells in the absence and presence of magnesium ions, respectively. The content of long-chain polyphosphates increased in the presence of magnesium ions, 5-fold for polymers with the average length of ∼45 phosphate residues, 3.7-fold for polymers with the average chain length of ∼75 residues, and more than 10-fold for polymers with the average chain length of ∼200 residues. On the contrary, the content of polyphosphates with the average chain length of ∼15 phosphate residues decreased threefold. According to the data of electron and confocal microscopy and X-ray microanalysis, the accumulated polyphosphates were localized in the cytoplasm and vacuoles. The cytoplasm of the cells accumulating polyphosphates in the presence of magnesium ions had numerous small phosphorus-containing inclusions; some of them were associated with large electron-transparent inclusions and the cytoplasmic membrane.  相似文献   

19.
Anaerobiosis induced an accumulation of polyphosphates (poly Pi) in a phosphate-rich medium by an alkaline-phosphatase constitutive mutant of Escherichia coli. The total poly Pi content was maximum at around 6 h of anaerobic growth. Both trichloroacetic acid- and NaOH-soluble poly Pi were found to be present. The acid-soluble fraction consisted mainly of a linear polymer of about 20 +/- 5 phosphate units, whereas the alkali-extractable poly Pi fraction contained at least four molecular species of higher chain length as determined by gel filtration. The majority of poly Pi extracted at 6 h had lower chain lengths than those extracted from cells incubated for 24 h. In vivo 31P nuclear magnetic resonance spectra of E. coli cells as a function of growth conditions were consistent with the in vitro extract results.  相似文献   

20.
The review presents the recent data demonstrating the important role high-molecular inorganic polyphosphates in regulatory processes in a yeast cell. It has been shown that polyphosphates are localized in different cell compartments, where they are metabolized by a special set of enzymes. The review presents the evidence in favor of the concept of multiple functions of these biopolymers in a cell, as well as the data on the pleiotropic effects of mutations in the genes encoding the enzymes of polyphosphate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号