首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY A crucial role for the cranial neural crest in head development has been established for both actinopterygian fishes and tetrapods. It has been claimed, however, that the neural crest is unimportant for head development in the Australian lungfish ( Neoceratodus forsteri   ), a member of the group (Dipnoi) which is commonly considered to be the living sister group of the tetrapods. In the present study, we used scanning electron microscopy to study cranial neural crest development in the Australian lungfish. Our results, contrary to those of Kemp, show that cranial neural crest cells do emerge and migrate in the Australian lungfish in the same way as in other vertebrates, forming mandibular, hyoid, and branchial streams. The major difference is in the timing of the onset of cranial neural crest migration. It is delayed in the Australian lungfish in comparison with their living sister group the Lissamphibia. Furthermore, the delay in timing between the emergence of the hyoid and branchial crest streams is very long, indicating a steeper anterior-posterior gradient than in amphibians. We are now extending our work on lungfish head development to include experimental studies (ablation of selected streams of neural crest cells) and fate mapping (using fluoresent tracer dyes such as DiI) to document the normal fate as well as the role in head patterning of the cranial neural crest in the Australian lungfish.  相似文献   

2.
The cranial neural crest has been shown to give rise to a diversity of cells and tissues, including cartilage, bone and connective tissue, in a variety of tetrapods and in the zebrafish. It has been claimed, however, that in the Australian lungfish these tissues are not derived from the cranial neural crest, and even that no migrating cranial neural crest cells exist in this species. We have earlier documented that cranial neural crest cells do migrate, although they emerge late, in the Australian lungfish. Here, we have used the lipophilic fluorescent dye, DiI, to label premigratory cranial neural crest cells and follow their fate until stage 43, when several cranial skeletal elements have started to differentiate. The timing and extent of their migration was investigated, and formation of mandibular, hyoid and branchial streams documented. Cranial neural crest was shown to contribute cells to several parts of the head skeleton, including the trabecula cranii and derivatives of the mandibular arch (e.g., Meckel's cartilage, quadrate), the hyoid arch (e.g., the ceratohyal) and the branchial arches (ceratobranchials I-IV), as well as to the connective tissue surrounding the myofibers in cranial muscles. We conclude that cranial neural crest migration and fate in the Australian lungfish follow the stereotyped pattern documented in other vertebrates.  相似文献   

3.
4.
Neural crest contributions to the lamprey head   总被引:5,自引:0,他引:5  
The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.  相似文献   

5.
Hindbrain neural crest cells were labeled with DiI and followed in ovo using a new approach for long-term time-lapse confocal microscopy. In ovo imaging allowed us to visualize neural crest cell migration 2-3 times longer than in whole embryo explant cultures, providing a more complete picture of the dynamics of cell migration from emergence at the dorsal midline to entry into the branchial arches. There were aspects of the in ovo neural crest cell migration patterning which were new and different. Surprisingly, there was contact between neural crest cell migration streams bound for different branchial arches. This cell-cell contact occurred in the region lateral to the otic vesicle, where neural crest cells within the distinct streams diverted from their migration pathways into the branchial arches and instead migrated around the otic vesicle to establish a contact between streams. Some individual neural crest cells did appear to cross between the streams, but there was no widespread mixing. Analysis of individual cell trajectories showed that neural crest cells emerge from all rhombomeres (r) and sort into distinct exiting streams adjacent to the even-numbered rhombomeres. Neural crest cell migration behaviors resembled the wide diversity seen in whole embryo chick explants, including chain-like cell arrangements; however, average in ovo cell speeds are as much as 70% faster. To test to what extent neural crest cells from adjoining rhombomeres mix along migration routes and within the branchial arches, separate groups of premigratory neural crest cells were labeled with DiI or DiD. Results showed that r6 and r7 neural crest cells migrated to the same spatial location within the fourth branchial arch. The diversity of migration behaviors suggests that no single mechanism guides in ovo hindbrain neural crest cell migration into the branchial arches. The cell-cell contact between migration streams and the co-localization of neural crest cells from adjoining rhombomeres within a single branchial arch support the notion that the pattern of hindbrain neural crest cell migration emerges dynamically with cell-cell communication playing an important guidance role.  相似文献   

6.
Cranial neural crest cells migrate in a precisely segmented manner to form cranial ganglia, facial skeleton and other derivatives. Here, we investigate the mechanisms underlying this patterning in the axolotl embryo using a combination of tissue culture, molecular markers, scanning electron microscopy and vital dye analysis. In vitro experiments reveal an intrinsic component to segmental migration; neural crest cells from the hindbrain segregate into distinct streams even in the absence of neighboring tissue. In vivo, separation between neural crest streams is further reinforced by tight juxtapositions that arise during early migration between epidermis and neural tube, mesoderm and endoderm. The neural crest streams are dense and compact, with the cells migrating under the epidermis and outside the paraxial and branchial arch mesoderm with which they do not mix. After entering the branchial arches, neural crest cells conduct an "outside-in" movement, which subsequently brings them medially around the arch core such that they gradually ensheath the arch mesoderm in a manner that has been hypothesized but not proven in zebrafish. This study, which represents the most comprehensive analysis of cranial neural crest migratory pathways in any vertebrate, suggests a dual process for patterning the cranial neural crest. Together with an intrinsic tendency to form separate streams, neural crest cells are further constrained into channels by close tissue apposition and sorting out from neighboring tissues.  相似文献   

7.
The Xenopus borealis quinacrine marker and scanning electron microscopy have been used to study the appearance, migration, and homing of neural crest cells in the embryo of Xenopus. The analysis shows that the primordium of the neural crest develops from the nervous layer of the ectoderm and consists of three segments at early neurula stages. This primordium is located in the lateral halves of the neural folds behind the prospective eye vesicles. The histological and experimental evidence shows that the neural crest cells also originate from the medial portion of the neural folds. The neural crest segments in the cephalic region start to migrate just before the closure of the neural tube. Isotopic and isochronic unilateral grafts of X. borealis neural crest into X. laevis embryos were performed in order to map the fate of the cranial crest segments and the vagal-truncal neural crest. The analysis of the X. laevis host embryos shows that the mandibular crest segment contributes to the lower jaw (Meckel's cartilage), quadrate, and ethmoid-trabecular cartilages, as well as to the ganglionic and Schwann cells of the trigeminus nerve, the connective tissues, the mesenchymal and choroid layers of the eye, and the cornea. The hyoid crest segment is located in the ceratohyal cartilage and in ganglia VII and VIII. The branchial crest segment migrates from the caudal part of the otic vesicle and divides into two portions which contribute to the cartilages of the gills. The vagal-truncal neural crest starts to migrate later at stage 25. It migrates by means of the vagus complex in a ventral direction and penetrates into the splanchnic layer of the digestive tract. The trunk neural crest cells disperse into three different pathways which differ from those of the avian embryo at this level.  相似文献   

8.
Recent studies of the heads of vertebrates have shown a primitive pattern of segmentation in the mesoderm and neural plate not previously recognized. The role of this pattern in the subsequent distribution of cranial crest and the development of branchial arches and cranial nerves, may resolve century-old arguments about the evolution of vertebrate segmentation. In this study, we examine the early embryonic development of the cranium of a primitive amniote, the snapping turtle, with the SEM. We show that the paraxial mesoderm cranial to the first-formed somites is segmented and that this pattern is based on somitomeres, similar to those described in the embryos of chick and mouse. Seven contiguous pairs of somitomeres comprise the “head mesoderm”; the first pair of somites actually arise from the eighth pair of somitomeres added to the axis. Cranial somitomeres are associated with specific brain regions, in that the first pair lie adjacent to prosencephalon, the second and third pair are adjacent to the mesencephalon, and the fourth, fifth, sixth, and seventh pair of somitomeres lie adjacent to individual neuromeres of the rhombencephalon. Prior to the closure of the anterior neuropore, cranial neural crest cells first emerge from the mesencephalon and migrate onto the second and third somitomeres. Shortly thereafter, neural crest cells emerge at more caudal levels of the rhombencephalon, beginning at the juncture of the fifth and sixth somitomeres. Eventually, neural crest originating from the mesencephalon spreads caudally as far as the fourth somitomere, leaving a gap in crest emigration adjacent to the fifth somitomere. The otic placode develops from the surface ectoderm covering the sixth and seventh somitomeres, and the adjacent rhombencephalic neural crest moves around the cranial and caudal edge of the placode. At more caudal levels, rhombencephalic crest cells merge with cervical crest populations to form a continuous sheet over the somites. By the time the anterior neuropore closes, some of the mesencephalic crest cells return from the paraxial mesoderm to spread onto the rostral wall of the optic vesicle and future telencephalon. The segmentation of the mesoderm and patterned distribution of cranial neural crest seen in snapping turtle embryos, further strengthens the argument that the heads of amniotes are derived from a common metameric pattern established early during gastrulation.  相似文献   

9.
The contribution of cranial neural crest cells to the development and patterning of cranial muscles in amphibians was investigated in the phylogenetically basal and morphologically generalized frog, Bombina orientalis. Experimental methods included fluorescent marking of premigratory cranial neural crest and extirpation of individual migratory streams. Neural crest cells contributed to the connective tissue component, but not the myofibers, of many larval muscles within the first two branchial arches (mandibular and hyoid), and complex changes in muscle patterning followed neural crest extirpation. Connective tissue components of individual muscles of either arch originate from the particular crest migratory stream that is associated with that arch, and this relationship is maintained regardless of the segmental identity-or embryonic derivation-of associated skeletal components. These developmental relations define a pattern of segmentation in the head of larval anurans that is similar to that previously described in the domestic chicken, the only vertebrate that has been thoroughly investigated in this respect. The fundamental role of the neural crest in patterning skeleton and musculature may represent a primitive feature of cranial development in vertebrates. Moreover, the corresponding developmental processes and cell fates appear to be conserved even when major evolutionary innovations-such as the novel cartilages and muscles of anuran larvae-result in major differences in cranial form.  相似文献   

10.
Experimental evidence that the neural crest participates in tooth development in any osteichthyan fish has so far been lacking. Using vital dye cell-lineage tracking, we demonstrate that trigeminal stream neural crest cells contribute to the dental papilla of developing teeth in the Australian lungfish. Trigeminal neural crest cells labeled before migration have been traced during the earliest stages of tooth development. Neural crest cells from a single midbrain locus were relocated as ectomesenchyme in all developing teeth of the lungfish regardless of their topographical position in the dentition. These cells remain at the dental papilla interface and become cells committed to dentine production. Our findings provide the first cell-lineage evidence that cranial neural crest is fated to ectomesenchyme for tooth development and dentine production in the living sister-group to tetrapods. This shows that cranial neural crest contribution to teeth is conserved from this node on the tetrapod phylogeny.  相似文献   

11.
Cranial neural crest cells are a pluripotent population of cells derived from the neural tube that migrate into the branchial arches to generate the distinctive bone, connective tissue and peripheral nervous system components characteristic of the vertebrate head. The highly conserved segmental organisation of the vertebrate hindbrain plays an important role in patterning the pathways of neural crest cell migration and in generating the distinct or separate streams of crest cells that form unique structures in each arch. We have used focal injections of DiI into the developing mouse hindbrain in combination with in vitro whole embryo culture to map the patterns of cranial neural crest cell migration into the developing branchial arches. Our results show that mouse hindbrain-derived neural crest cells migrate in three segregated streams adjacent to the even-numbered rhombomeres into the branchial arches, and each stream contains contributions of cells from three rhombomeres in a pattern very similar to that observed in the chick embryo. There are clear neural crest-free zones adjacent to r3 and r5. Furthermore, using grafting and lineage-tracing techniques in cultured mouse embryos to investigate the differential ability of odd and even-numbered segments to generate neural crest cells, we find that odd and even segments have an intrinsic ability to produce equivalent numbers of neural crest cells. This implies that inter-rhombomeric signalling is less important than combinatorial interactions between the hindbrain and the adjacent arch environment in specific regions, in the process of restricting the generation and migration of neural crest cells. This creates crest-free territories and suggests that tissue interactions established during development and patterning of the branchial arches may set up signals that the neural plate is primed to interpret during the progressive events leading to the delamination and migration of neural crest cells. Using interspecies grafting experiments between mouse and chick embryos, we have shown that this process forms part of a conserved mechanism for generating neural crest-free zones and contributing to the separation of migrating crest populations with distinct Hox expression during vertebrate head development.  相似文献   

12.
The neural crest provides an excellent model system to study invasive cell migration, however it is still unclear how molecular mechanisms direct cells to precise targets in a programmed manner. We investigate the role of a potential guidance factor, neuropilin-1, and use functional knockdown assays, tissue transplantation and in vivo confocal time-lapse imaging to analyze changes in chick cranial neural crest cell migratory patterns. When neuropilin-1 function is knocked down in ovo, neural crest cells fail to fully invade the branchial arches, especially the 2nd branchial arch. Time-lapse imaging shows that neuropilin-1 siRNA transfected neural crest cells stop and collapse filopodia at the 2nd branchial arch entrances, but do not die. This phenotype is cell autonomous. To test the influence of population pressure and local environmental cues in driving neural crest cells to the branchial arches, we isochronically transplanted small subpopulations of DiI-labeled neural crest cells into host embryos ablated of neighboring, premigratory neural crest cells. Time-lapse confocal analysis reveals that the transplanted cells migrate in narrow, directed streams. Interestingly, with the reduction of neuropilin-1 function, neural crest cells still form segmental migratory streams, suggesting that initial neural crest cell migration and invasion of the branchial arches are separable processes.  相似文献   

13.
In the head of vertebrate embryos, neural crest cells migrate from the neural tube into the presumptive facial region and condense to form cranial ganglia and skeletal elements in the branchial arches. We show that newly formed neural folds and migrating neural crest cells express the neuropilin 2 (npn2) receptor in a manner that is highly conserved in amniotes. The repulsive npn2 ligand semaphorin (sema) 3F is expressed in a complementary pattern in the mouse. Furthermore, mice carrying null mutations for either npn2 or sema3F have abnormal cranial neural crest migration. Most notably, "bridges" of migrating cells are observed crossing between neural crest streams entering branchial arches 1 and 2. In addition, trigeminal ganglia fail to form correctly in the mutants and are improperly condensed and loosely organized. These data show that npn2/sema3F signaling is required for proper cranial neural crest development in the head.  相似文献   

14.
We describe the development of the cranial neural crest cell streams relative to embryonic events such as neural tube formation and somite appearance in two Eurasian frog species belonging to the Ranidae, Rana temporaria and Sylvirana nigrovittata, and demonstrate developmental heterochronies. The mandibular stream appeared well developed in R. temporaria at a time when the embryo was still spherical, the neural folds were elevated, and the neural plate was wide open, thus earlier than known from any frog species so far. The appearance of the second stream and its division into hyoid and branchial portions was clearly accelerated in R. temporaria relative to other embryonic events when compared to S. nigrovittata. For example, in R. temporaria, the hyoid and branchial portions of the cranial neural crest cell streams were separated before the neural folds had started to fuse, whereas in S. nigrovittata this event took place only after the neural folds had fused completely. Such ostentatious heterochronies related to the characters used herein have formerly only been reported from comparisons between species belonging to different higher taxa. Our results re‐confirm that to understand the full dynamics of the evolution of development, studies need to implement comparative embryological approaches, and include phylogenetically relatively closely related taxa.  相似文献   

15.
Neuropilin (NRP) receptors and their class 3 semaphorin (SEMA3) ligands play well-established roles in axon guidance, with loss of NRP1, NRP2, SEMA3A or SEMA3F causing defasciculation and errors in growth cone guidance of peripherally projecting nerves. Here we report that loss of NRP1 or NRP2 also impairs sensory neuron positioning in the mouse head, and that this defect is a consequence of inappropriate cranial neural crest cell migration. Specifically, neural crest cells move into the normally crest-free territory between the trigeminal and hyoid neural crest streams and recruit sensory neurons from the otic placode; these ectopic neurons then extend axons between the trigeminal and facioacoustic ganglia. Moreover, we found that NRP1 and NRP2 cooperate to guide cranial neural crest cells and position sensory neurons; thus, in the absence of SEMA3/NRP signalling, the segmentation of the cranial nervous system is lost. We conclude that neuropilins play multiple roles in the sensory nervous system by directing cranial neural crest cells, positioning sensory neurons and organising their axonal projections.  相似文献   

16.
To establish whether a region of the cranial neural crest contributes cells to the developing heart of Ambystoma mexicanum (axolotl), as it does in many other vertebrates, we constructed a fate map for the neural crest in late neurula stage (stage 19-20) embryos. The fluorescent vital dye, Dil, was used as the lineage label. The various regions of the cranial neural folds were identified in relation to such landmarks as the developing forebrain, midbrain and hindbrain, and the appearance and extent of emerging somites. Labelled cells originating in the rhombencephalic region were found in the aortic arches and in the truncus arteriosus, and occasionally in the walls of the conus arteriosus. Cells were also found in the third and fourth branchial arches. Labelled neural crest from the adjacent anterior trunk region appeared neither in the heart nor the visceral skeleton, whereas those from the mesencephalic region contributed to the first hypobranchial cartilage and to the first three branchial arches, but not to the heart. No labelled cells from any of the regions were seen in the ventricle or auricle.  相似文献   

17.
Loss of Twist function in the cranial mesenchyme of the mouse embryo causes failure of closure of the cephalic neural tube and malformation of the branchial arches. In the Twist(-/-) embryo, the expression of molecular markers that signify dorsal forebrain tissues is either absent or reduced, but those associated with ventral tissues display expanded domains of expression. Dorsoventral organization of the mid- and hindbrain and the anterior-posterior pattern of the neural tube are not affected. In the Twist(-/-) embryo, neural crest cells stray from the subectodermal migratory path and the late-migrating subpopulation invades the cell-free zone separating streams of cells going to the first and second branchial arches. Cell transplantation studies reveal that Twist activity is required in the cranial mesenchyme for directing the migration of the neural crest cells, as well as in the neural crest cells within the first branchial arch to achieve correct localization. Twist is also required for the proper differentiation of the first arch tissues into bone, muscle, and teeth.  相似文献   

18.
The proper assembly of craniofacial structures and the peripheral nervous system requires neural crest cells to emerge from the neural tube and navigate over long distances to the branchial arches. Cell and molecular studies have shed light on potential intrinsic and extrinsic cues, which, in combination, are thought to ensure the induction and specification of cranial neural crest cells. However, much less is known about how migrating neural crest cells interpret and integrate signals from the microenvironment and other neural crest cells to sort into and maintain the stereotypical pattern of three spatially segregated streams. Here, we explore the extent to which cranial neural crest cells use cell-to-cell and cell-environment interactions to pathfind. The cell membrane and cytoskeletal elements in chick premigratory neural crest cells were labeled in vivo. Three-dimensional reconstructions of migrating neural crest cells were then obtained using confocal static and time-lapse imaging. It was found that neural crest cells maintained nearly constant contact with other migrating neural crest cells, in addition to the microenvironment. Cells used lamellipodia or short, thin filopodia (1-2 microm wide) for local contacts (<20 microm). Non-local, long distance contact (up to 100 microm) was initiated by filopodia that extended and retracted, extended and tracked, or tethered two non-neighboring cells. Intriguingly, the cell-to-cell contacts often stimulated a cell to change direction in favor of a neighboring cell's trajectory. In summary, our results present in vivo evidence for local and long-range neural crest cell interactions, suggesting a possible role for these contacts in directional guidance.  相似文献   

19.
In recent studies of chick embryos, the cranial paraxial mesoblast was found to be patterned into segmental units termed somitomeres. Anterior to the first segmental cleft, seven contiguous segments are aligned, with somitomeric interfaces forming grooves at right angles to the midline. In this study, the morphological relationship between the migratory pathways of cranial neural crest cells and patterned primary mesenchyme was analyzed with the scanning electron microscope, utilizing stereo imaging. In addition, the development of neuromeres in the adjacent neural tube was monitored. It was found that cranial neural crest first appears along the dorsal midline as a ridge of cells which loosens from the wall of the neural tube and migrates laterally as discrete populations. The mesencephalic crest appears first, immediately following neural tube fusion at that level, and migrates over the dorsal surface of the adjacent third somitomere and into the grooves formed by its juncture with the second and fourth somitomeres. Later, the addition of prosencephalic and rostral rhombencephalic crest extends the mesencephalic population to form a shelf of crest which spreads over the dorsal surface of the first four somitomeres. Component cells of this most cranial crest shelf become oriented and mimic the metameric pattern of the subjacent somitomeres. Crest cells adjacent to the fifth somitomeres appear along the midline, but do not migrate, creating a gap anterior to the otic crest. By stage 9, a narrow finger-like segment of the otic crest migrates from a specific neuromere into the grooved interface between the fifth and sixth somitomeres, delimiting the rostral border of the otic placode in the ectoderm above. By the end of stage 9, crest cells delimiting the caudal border of the placode have migrated along the interface of the seventh and eighth somitomeres. The crest cells adjacent to the sixth and seventh somitomeres, between the rostral and caudal otic populations, appear but do not migrate, remaining condensed along the midline. Thus, otic crest cells form a ring which circumscribes the invaginating otic placode. This study suggests that the precise distribution of cranial neural crest cells may result from their introduction at specific times, as specific populations from specific brain regions (neuromeres), onto a patterned mesodermal layer.  相似文献   

20.
Vital dye analysis of cranial neural crest cell migration in the mouse embryo.   总被引:15,自引:0,他引:15  
The spatial and temporal aspects of cranial neural crest cell migration in the mouse are poorly understood because of technical limitations. No reliable cell markers are available and vital staining of embryos in culture has had limited success because they develop normally for only 24 hours. Here, we circumvent these problems by combining vital dye labelling with exo utero embryological techniques. To define better the nature of cranial neural crest cell migration in the mouse embryo, premigratory cranial neural crest cells were labelled by injecting DiI into the amniotic cavity on embryonic day 8. Embryos, allowed to develop an additional 1 to 5 days exo utero in the mother before analysis, showed distinct and characteristic patterns of cranial neural crest cell migration at the different axial levels. Neural crest cells arising at the level of the forebrain migrated ventrally in a contiguous stream through the mesenchyme between the eye and the diencephalon. In the region of the midbrain, the cells migrated ventrolaterally as dispersed cells through the mesenchyme bordered by the lateral surface of the mesencephalon and the ectoderm. At the level of the hindbrain, neural crest cells migrated ventrolaterally in three subectodermal streams that were segmentally distributed. Each stream extended from the dorsal portion of the neural tube into the distal portion of the adjacent branchial arch. The order in which cranial neural crest cells populate their derivatives was determined by labelling embryos at different stages of development. Cranial neural crest cells populated their derivatives in a ventral-to-dorsal order, similar to the pattern observed at trunk levels. In order to confirm and extend the findings obtained with exo utero embryos, DiI (1,1-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate) was applied focally to the neural folds of embryos, which were then cultured for 24 hours. Because the culture technique permitted increased control of the timing and location of the DiI injection, it was possible to determine the duration of cranial neural crest cell emigration from the neural tube. Cranial neural crest cell emigration from the neural folds was completed by the 11-somite stage in the region of the rostral hindbrain, the 14-somite stage in the regions of the midbrain and caudal hindbrain and not until the 16-somite stage in the region of the forebrain. At each level, the time between the earliest and latest neural crest cells to emigrate from the neural tube appeared to be 9 hours.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号