首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的研究Tg-visfatin×ob/ob小鼠的表型特征并探讨内脂素的作用。方法将visfatin转基因小鼠与ob(+/-)小鼠杂交,获取visfatin转基因ob/ob小鼠(Tg-visfatin×ob/ob),以ob/ob小鼠为对照,测定两种小鼠1~9月龄的体重变化,分别在3、5、9月龄测定其腹腔糖耐受和胰岛素耐受情况,并对其从9月龄~11月龄的死亡率进行统计。结果两种小鼠在1~9月龄的体重差异无显著性。腹腔糖耐受和胰岛素耐受实验显示,与ob/ob小鼠相比,3月龄时,Tg-visfatin×ob/ob小鼠的糖耐受受损及胰岛素耐受情况得以改善;5月龄时,Tg-visfatin×ob/ob小鼠仅糖耐受受损得以改善;9月龄时,Tg-visfatin×ob/ob小鼠具有更严重的糖耐受受损及胰岛素耐受。统计结果显示,从9月龄到11月龄之间,Tg-visfatin×ob/ob小鼠的死亡率比ob/ob小鼠提高了44.4%。结论 visfatin体内的高表达对ob/ob小鼠糖耐受和胰岛素耐受有影响,作用效果随着小鼠的年龄不同而变化,在早期起到代偿性的缓解ob/ob小鼠的糖耐受和胰岛素耐受的作用,到后期表现为失代偿性的加重了ob/ob小鼠的糖耐受和胰岛素耐受,并增加了小鼠的死亡率。  相似文献   

2.
Glucose tolerance declines with maturation and aging in several species, but the time of onset and extent of changes in insulin sensitivity and insulin secretion and their contribution to changes in glucose tolerance are unclear. We therefore determined the effect of maturation on glucose tolerance, insulin secretion, and insulin sensitivity in a longitudinal study of male and female sheep from preweaning to adulthood, and whether these measures were related across age. Glucose tolerance was assessed by intravenous glucose tolerance test (IVGTT, 0.25 g glucose/kg), insulin secretion as the integrated insulin concentration during IVGTT, and insulin sensitivity by hyperinsulinemic-euglycemic clamp (2 mU insulin.kg(-1).min(-1)). Glucose tolerance, relative insulin secretion, and insulin sensitivity each decreased with age (P < 0.001). The disposition index, the product of insulin sensitivity, and various measures of insulin secretion during fasting or IVGTT also decreased with age (P < 0.001). Glucose tolerance in young adult sheep was independently predicted by insulin sensitivity (P = 0.012) and by insulin secretion relative to integrated glucose during IVGTT (P = 0.005). Relative insulin secretion before weaning was correlated positively with that in the adult (P = 0.023), whereas glucose tolerance, insulin sensitivity, and disposition indexes in the adult did not correlate with those at earlier ages. We conclude that glucose tolerance declines between the first month of life and early adulthood in the sheep, reflecting decreasing insulin sensitivity and absence of compensatory insulin secretion. Nevertheless, the capacity for insulin secretion in the adult reflects that early in life, suggesting that it is determined genetically or by persistent influences of the perinatal environment.  相似文献   

3.
Although there is now substantial evidence linking low birthweight with impaired glucose tolerance and type 2 diabetes in adult life, the extent to which reduced fetal growth is associated with impaired insulin sensitivity, defective insulin secretion, or a combination of both factors is not clear. We have therefore examined the relationships between birth size and both insulin sensitivity and insulin secretion as assessed by an intravenous glucose tolerance test with minimal model analysis in 163 men and women, aged 20 yr, born at term in Adelaide, South Australia. Birth size did not correlate with body mass index or fat distribution in men or women. Men who were lighter or shorter as babies were less insulin sensitive (P = 0.03 and P = 0.01, respectively), independently of their body mass index or body fat distribution. They also had higher insulin secretion (P = 0.007 and P = 0.006) and increased glucose effectiveness (P = 0.003 and P = 0.003). Overall glucose tolerance, however, did not correlate with birth size, suggesting that the reduced insulin sensitivity was being compensated for by an increase in insulin secretion and insulin-independent glucose disposal. There were no relationships between birth size and insulin sensitivity or insulin secretion in women. These results show that small size at birth is associated with increased insulin resistance and hyperinsulinemia in young adult life but that these relationships are restricted to the male gender in this age group.  相似文献   

4.
We examined the effects of anesthetic, age, and strain on oral glucose tolerance tests (OGTT, 1 g/kg body weight) and intraperitoneal glucose tolerance tests (IPGTT, 2 g/kg body weight) in spontaneously hypertensive (SH) and Wistar rats. Pentobarbital anesthesia caused an elevation in basal glucose and insulin levels in Wistar rats at 9 and 16 weeks of age and in SH rats at 9 weeks. Anesthesia increased the insulin output during an OGTT in both strains of rats while glucose was unchanged. Anesthesia reduced the insulin sensitivity index calculated from the OGTT but not from the IPGTT data. The age of the rats (9-11 vs. 16-18 weeks) had no effect on the basal glucose or insulin levels, but older Wistar rats had a greater insulin output following oral glucose and older SH rats had a greater insulin output following intraperitoneal glucose. On the basis of the insulin sensitivity index, SH rats were clearly more insulin resistant than age-matched Wistar rats. The SH rats also had higher basal insulin levels, as well as higher insulin output, following both glucose challenges. In summary, SH rats are more insulin resistant than Wistar rats, and anesthesia, which elevated basal glucose and insulin levels and increased the insulin output in response to a glucose challenge, may increase insulin resistance.  相似文献   

5.
This study evaluates the role of adrenal hormones in the development of hyperinsulinaemia and impaired glucose homeostasis in genetically obese hyperglycaemic C57BL/6J ob/ob mice. Lean (+/?) and obese mice were bilaterally adrenalectomised or sham operated at 5 weeks of age, and glucose tolerance was examined after 7 and 14 days. Adrenalectomy temporarily reduced food intake and body weight gain in lean mice, and improved glucose tolerance without a significant change in plasma insulin concentrations at both intervals studied. In obese mice adrenalectomy permanently reduced body weight gain and food intake to values comparable with lean mice. Glucose tolerance was improved in adrenalectomised obese mice at both intervals studied, resulting in plasma glucose concentrations similar to adrenalectomised lean mice. Plasma insulin concentrations during the tolerance tests were reduced in adrenalectomised obese mice, but remained higher than in lean mice. Adrenalectomy did not improve the poor insulin response to parenteral glucose in obese mice. The results indicate that adrenal hormones play an important role in the development of glucose intolerance and contribute to the hyperinsulinaemia in obese (ob/ob) mice, in part by promoting hyperphagia.  相似文献   

6.
Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-h blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean (s.d.) age 41 (5) years; BMI 27.4 (2.0) kg/m(2)) completed two 14-day treatments with hypocaloric diet and 8.5- or 5.5-h nighttime sleep opportunity in random order 7 (3) months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free fatty acids (FFA), 24-h blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 (0.3) BMI units) during each treatment. Bedtime restriction reduced sleep by 131 (30) min/day. Recurrent sleep curtailment decreased 24-h serum insulin concentrations (i.e., enhanced 24-h insulin economy) without changes in oral glucose tolerance and 24-h glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA, which suppressed normally following glucose ingestion, and lower total and low-density lipoprotein cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-h insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability.  相似文献   

7.
Somatostatin (SST) peptide is a potent inhibitor of insulin secretion and its effect is mediated via somatostatin receptor 5 (SSTR5) in the endocrine pancreas. To investigate the consequences of gene ablation of SSTR5 in the mouse pancreas, we have generated a mouse model in which the SSTR5 gene was specifically knocked down in the pancreatic beta cells (betaSSTR5Kd) using the Cre-lox system. Immunohistochemistry analysis showed that SSTR5 gene expression was absent in beta cells at three months of age. At the time of gene ablation, betaSSTR5Kd mice demonstrated glucose intolerance with lack of insulin response and significantly reduced serum insulin levels. Insulin tolerance test demonstrated a significant increase of insulin clearance in vivo at the same age. In vitro studies demonstrated an absence of response to SST-28 stimulation in the betaSSTR5Kd mouse islet, which was associated with a significantly reduced SST expression level in betaSSTR5Kd mice pancreata. In addition, betaSSTR5Kd mice had significantly reduced serum glucose levels and increased serum insulin levels at 12 months of age. Glucose tolerance test at an older age also indicated a persistently higher insulin level in betaSSTR5Kd mice. Further studies of betaSSTR5Kd mice had revealed elevated serum C-peptide levels at both 3 and 12 months of age, suggesting that these mice are capable of producing and releasing insulin to the periphery. These results support the hypothesis that SSTR5 plays a pivotal role in the regulation of insulin secretion in the mouse pancreas.  相似文献   

8.
OBJECTIVE: To investigate whether the association between low birth weight and increased risk of developing impaired glucose tolerance, insulin resistance, hypertriglyceridaemia, and hypertension in middle age is apparent by the age of 20 in people born small for gestational age. DESIGN: Regional cohort study. SETTING: Maternity registry, Haguenau, France. SUBJECTS: 236 full term singleton babies born small for gestational age (birth weight or length, or both, below third centile) during 1971-8 and 281 with normal birth weight (between 25th and 75th centile). All subjects were contacted and evaluated at a mean (SD) age of 20.6 (2.1) years. MAIN OUTCOME MEASURES: Adult height; concentrations of glucose, insulin, and proinsulin during an oral glucose tolerance test; lipid and fibrinogen concentrations; and blood pressure. RESULTS: After sex and target height were adjusted for, subjects who had been born small for gestational age were significantly shorter at age 20 than those with a normal birth weight (men 4.5 cm shorter (95% confidence interval 6.0 to 3.0 cm); women 3.94 cm shorter (5.2 to 2.7 cm)). After sex and body mass index were adjusted for, mean plasma glucose concentration 30 minutes after a glucose load, fasting insulin concentration (in women), and insulin and proinsulin concentrations 30 and 120 minutes after a glucose load were significantly higher in subjects who had been born small for gestational age than in those with a normal birth weight. Mean lipid and fibrinogen concentrations and blood pressure were not different between the two groups. CONCLUSIONS: Intrauterine growth retardation has long term consequences such as reduced final height Raised insulin and proinsulin concentrations are present in young adults born small for gestational age and could be markers of early changes in insulin sensitivity.  相似文献   

9.
Blood glucose, plasma insulin and C-peptide responses to oral glucose tolerance test (OGTT) were studied under basal conditions and immediately after 90-min exercise (60% VO2 max) in nondiabetic subjects with normal or impaired glucose tolerance. During the postexercise recovery blood glucose response to OGTT was increased in normal subjects and markedly decreased in those with impaired glucose tolerance, while insulin and C-peptide responses were diminished in both subgroups. The ratio of blood glucose to insulin was similarly elevated in all subjects. Comparing with basal conditions no significant changes were found in C-peptide to insulin ratio in response to OGTT after exercise, although a tendency towards an elevation of this ratio was noted in the subjects with impaired glucose tolerance. The data indicate that the reduced insulin response to OGTT during postexercise recovery in healthy subjects is due to diminished insulin secretion without any substantial changes in the hormone removal from blood, whereas in the glucose intolerant men the latter process may be enhanced.  相似文献   

10.
Prenatally testosterone (T)-treated female sheep exhibit ovarian and endocrinological features that resemble those of women with polycystic ovarian syndrome (PCOS), which include luteinizing hormone excess, polyfollicular ovaries, functional hyperandrogenism, and anovulation. In this study, we determined the developmental impact of prenatal T treatment on insulin sensitivity indexes (ISI), a variable that is affected in a majority of PCOS women. Pregnant ewes were treated with 60 mg testosterone propionate intramuscularly in cottonseed oil two times a week or vehicle [control (C)] from days 30 to 90 of gestation. T-females weighed less than C-females or males (P < 0.05) at birth and at 5 wk of age. T-females had an increased anogenital ratio. An intravenous glucose tolerance test followed by an insulin tolerance test conducted after an overnight fast at 5, 20, and 30 wk of age (n = 7-8/group) revealed that ISI were higher at 5 than 30 wk of age in C-females, reflective of a developing insulin resistance associated with puberty. T-females had higher basal insulin levels, higher fasting insulin-to-glucose ratio, and higher incremental area under the insulin curve to the glucose challenge. The ISI of T-females was similar to that of males. No differences in ISI were evident between groups at 20 and 30 wk of age. Mean basal plasma glucose concentrations and glucose disappearance and uptake did not differ between groups at any age. Our findings suggest that prenatal T treatment leads to offspring with reduced birth weight and impaired insulin sensitivity in early postnatal life.  相似文献   

11.
Effect of chronic treatment with Bis(maltolato)oxovanadium (IV) (BMOV) was studied in streptozotocin (STZ)-induced neonatal non-insulin-dependent-diabetic (NIDDM) rats. Intraperitoneal injection of STZ (90 mg kg(-1)) in Wistar rat pups (day 2 old) produced mild hyperglycemia, impaired glucose tolerance and insulin resistance at the age of 3 months. Treatment with BMOV (0.23 mM kg(-1)) in drinking water for 6 weeks produced a significant decrease in elevated serum glucose levels without any significant change in serum insulin levels in diabetic rats. BMOV treatment significantly decreased integrated area under the glucose curve without any significant change in integrated area under the insulin curve indicating improved glucose tolerance. Treatment also significantly increased K(ITT) value of diabetic rats indicating increased insulin sensitivity. BMOV treatment significantly reduced hypercholesterolemia in diabetic rats. Treatment also significantly decreased serum triglyceride levels in both diabetic and non-diabetic rats. The data suggest that chronic BMOV treatment improves glucose and lipid homeostasis. These effects appear to be due to the insulin sensitizing action of vanadium.  相似文献   

12.
Yuan Q  Chen L  Liu C  Xu K  Mao X  Liu C 《PloS one》2011,6(10):e25167
Epidemiological studies have linked intrauterine growth retardation (IUGR) to the metabolic diseases, consisting of insulin resistance, type 2 diabetes, obesity and coronary artery disease, during adult life. To determine the internal relationship between IUGR and islet β cell function and insulin sensitivity, we established the IUGR model by maternal nutrition restriction during mid- to late-gestation. Glucose tolerance test and insulin tolerance test (ITT) in vivo and glucose stimulated insulin secretion (GSIS) test in vitro were performed at different stages in IUGR and normal groups. Body weight, pancreas weight and pancreas/body weight of IUGR rats were much lower than those in normal group before 3 weeks of age. While the growth of IUGR rats accelerated after 3 weeks, pancreas weight and pancreas/body weight remained lower till 15 weeks of age. In the newborns, the fasting glucose and insulin levels of IUGR rats were both lower than those of controls, whereas glucose levels at 120 and 180 min after glucose load were significantly higher in IUGR group. Between 3 and 15 weeks of age, both the fasting glucose and insulin levels were elevated and the glucose tolerance was impaired with time in IUGR rats. At age 15 weeks, the area under curve of insulin (AUCi) after glucose load in IUGR rats elevated markedly. Meanwhile, the stimulating index of islets in IUGR group during GSIS test at age 15 weeks was significantly lower than that of controls. ITT showed no significant difference in two groups before 7 weeks of age. However, in 15-week-old IUGR rats, there was a markedly blunted glycemic response to insulin load compared with normal group. These findings demonstrate that IUGR rats had both impaired pancreatic development and deteriorated glucose tolerance and insulin sensitivity, which would be the internal causes why they were prone to develop type 2 diabetes.  相似文献   

13.
-Di(2-ethylhexyl) phthalate (DEHP), a typical endocrine-disrupting chemical (EDC), is widely used as plasticizer. DEHP exposure in humans is virtually ubiquitous, and those undergoing certain medical procedures can be especially high. In this study, we investigated whether developmental DEHP exposure disrupted glucose homeostasis in the rat and whether this was associated with the early impairment in endocrine pancreas. Pregnant Wistar rats were administered DEHP (1.25 and 6.25 mg·kg(-1)·day(-1)) or corn oil throughout gestation and lactation by oral gavage. Body weight, glucose and insulin tolerance, and β-cell morphometry and function were examined in offspring during the growth. In this study, developmental DEHP exposure led to abnormal β-cell ultrastructure, reduced β-cell mass, and pancreatic insulin content as well as alterations in the expression of genes involved in pancreas development and β-cell function in offspring at weaning. At adulthood, female DEHP-exposed offspring exhibited elevated blood glucose, reduced serum insulin, impaired glucose tolerance, and insulin secretion. Male DEHP-exposed offspring had increased serum insulin, although there were no significant differences in blood glucose at fasting and during glucose tolerance test. In addition, both male and female DEHP-exposed offspring had significantly lower birth weight and maintained relatively lower body weight up to 27 wk of age. These results suggest that developmental exposure to DEHP gives rise to β-cell dysfunction and the whole body glucometabolic abnormalities in the rat. DEHP exposure in critical periods of development can be a potential risk factor, at least in part, for developing diabetes.  相似文献   

14.
Oral glucose tolerance tests were performed under pentobarbital anesthesia in 43 male Wistar rats 2 to 18 months of age in order to determine if insulin and glucagon secretion are altered with aging. Although any linear correlation was not demonstrated between aging and blood glucose, plasma insulin or glucagon levels, post-glucose levels of blood glucose were significantly suppressed and those of plasma glucagon were significantly elevated at 4 to 6 months of age. No significant difference was found between young (2 months of age) and aged rats (12 to 14 and 17 to 18 months of age) in either blood glucose or plasma insulin levels during oral glucose load. On the other hand, post-glucose plasma glucagon levels of the aged rats were significantly higher than those of the young ones. Furthermore, comparisons of various kinds of indices among the different age groups, such as insulinogenic index, insulin/glucagon and so forth during oral glucose tolerance tests also indicate the significant alteration of glucagon secretion during aging process. It is concluded from the present data that glucose tolerance does not apparently deteriorate during aging process in rats but that glucagon responses to oral glucose administration are elevated with aging.  相似文献   

15.
In Prader-Willi syndrome (PWS) growth hormone therapy (GHT) improves height, body composition, agility and muscular strength. In such patients it is necessary to consider the potential diabetogenic effect of GHT, since they tend to develop type 2 diabetes, particularly after the pubertal age. The aim of our study was to investigate the effects of GHT on glucose and insulin homeostasis in PWS children. An oral glucose tolerance test (OGTT) was performed in 24 prepubertal PWS children (15 male, 9 female, age: 5.8 +/- 2.8 years), 16 were obese (group A) and 8 had normal weight (group B), before and after 2.7 +/- 1.3 years GHT (0.22 +/- 0.03 mg/kg/week) and, only at baseline, in 35 prepubertal children with simple obesity (19 male, 16 female) (group C). Fasting glucose and insulin, glucose tolerance, insulin sensitivity index (ISI), homeostasis model assessment of insulin resistance (HOMA-IR), quick insulin check index (QUICKI), area under the curves (AUC) of glucose and insulin were estimated. At the start of GHT, all PWS children were normoglycaemic and normotolerant but two developed impaired glucose tolerance after 2.2 and 1.9 years of therapy, respectively. At baseline, group A showed lower fasting insulin levels, HOMA-IR and AUC of insulin, higher ISI, QUICKI and AUC of glucose than group C. Comparing groups A and B, AUC of insulin was higher and ISI lower in group A. During GHT, a significant increase of fasting insulin and glucose, a worsening of insulin resistance (HOMA-IR) and insulin sensitivity (QUICKI) was found only in group A while ISI did not change. The AUC of glucose decreased in both groups instead AUC of insulin did not change. BMI-SDS decreased in group A and increased in group B. The increased insulin resistance and decreased insulin sensitivity in obese PWS patients, as well as the occurrence of impaired glucose tolerance during GHT, suggest that a close monitoring of glucose and insulin homeostasis is mandatory, especially in treated obese PWS children.  相似文献   

16.
The aim of this study was to test if a beta-cell defect is associated to deterioration of glucose tolerance early during the natural history of the type 2 diabetes mellitus . In 41 overweight women, with macrosomic infants in their antecedent deliveries, measures of insulin response and insulin sensitivity were derived from a short (45 min) iv glucose test. The early (EIR) and the late (LIR) phase insulin responses and the insulin sensitivity index (Si) were calculated. According the response to 75 g oral glucose test the subjects were divided into two groups: Imparired glucose tolerance (IGT;n = 12), and normal glucose tolerance (NGT; n = 29). EIR was reduced in IGT group (14.9 ± 3.6 vs 37.0 ± 4.0; p< 0.002). Glucose tolerance during oral glucose tolerance test (OGTT), correlated inversly to EIR (r=-0.45; n=41; p< 0.01). A strong correlation of EIR to LIR (r=0.88; n = 41; p< 0.001) but no correlation between glucose tolerance and Si was found.  相似文献   

17.
The role of peripheral vs. central circadian rhythms and Clock in the maintenance of metabolic homeostasis and with aging was examined by using Clock(Delta19)+MEL mice. These have preserved suprachiasmatic nucleus and pineal gland rhythmicity but arrhythmic Clock gene expression in the liver and skeletal muscle. Clock(Delta19)+MEL mice showed fasting hypoglycemia in young-adult males, fasting hyperglycemia in older females, and substantially impaired glucose tolerance overall. Clock(Delta19)+MEL mice had substantially reduced plasma insulin and plasma insulin/glucose nocturnally in males and during a glucose tolerance test in females, suggesting impaired insulin secretion. Clock(Delta19)+MEL mice had reduced hepatic expression and loss of rhythmicity of gck, pfkfb3, and pepck mRNA, which is likely to impair glycolysis and gluconeogenesis. Clock(Delta19)+MEL mice also had reduced glut4 mRNA in skeletal muscle, and this may contribute to poor glucose tolerance. Whole body insulin tolerance was enhanced in Clock(Delta19)+MEL mice, however, suggesting enhanced insulin sensitivity. These responses occurred although the Clock(Delta19) mutation did not cause obesity and reduced plasma free fatty acids while increasing plasma adiponectin. These studies on clock-gene disruption in peripheral tissues and metabolic homeostasis provide compelling evidence of a relationship between circadian rhythms and the glucose/insulin and adipoinsular axes. It is, however, premature to declare that clock-gene disruption causes the full metabolic syndrome.  相似文献   

18.
Rats were fed a diet containing either 20% ("control") or 8% ("reduced-protein") protein throughout pregnancy and lactation. Their female offspring were weaned onto the same respective diets. At 63 days of age one set of control and reduced-protein rats (n = 16 per group) underwent intraperitoneal glucose tolerance tests and one week later were killed and their pancreatic hormones extracted and measured. The reduced protein rats had better glucose tolerance (p < 0.001) and lower pancreatic insulin (p < 0.01) and amylin (p < 0.01) contents. Further sets of control and reduced-protein rats were then fed either chow or a cafeteria-style diet (n = 16 in each of the four groups). These rats underwent intraperitoneal glucose tolerance tests at 133 days of age, which showed the cafeteria-fed animals to have a worse glucose tolerance than the chow-fed animals irrespective of previous diet exposure (p < 0.0001). One week later reduced-protein rats still had lower pancreatic insulin contents (p < 0.05) (and a trend for lower amylin contents), but also had increased pancreatic glucagon contents (p < 0.05). There were no detectable differences in pancreatic somatostatin-like immunoreactivity or pancreatic polypeptide contents. These results are consistent with pancreatic beta- and alpha-cells being selectively susceptible to effects associated with early dietary protein restriction.  相似文献   

19.
BACKGROUND/AIM: In children with Prader-Labhart-Willi syndrome (PWS), the insulin secretion is reduced, despite obesity, being ascribed to the growth hormone (GH) deficiency of hypothalamic origin. Besides, an increased prevalence of diabetes mellitus was described in this syndrome. Hence, we addressed the questions of how body composition and insulin secretion are interrelated and what impact GH therapy has on the carbohydrate metabolism in PWS. METHODS: We measured weight, lean and fat mass (by dual-energy X-ray absorptiometry), triglycerides, HbA(1c), and fasting insulin and glucose levels in 17 children (age range 1.5-14.6 years) with PWS to examine whether the carbohydrate metabolism is altered during 36 months of therapy with 8 mg GH/m(2) body surface/week. In a subgroup of 8 children, the insulin secretion was longitudinally assayed during oral glucose tolerance at 0 and 12 months of therapy. RESULTS: Before therapy, the insulin secretion was lower and markedly delayed as compared with reference data and did not rise during therapy. The glucose tolerance was impaired in 2 of 12 children examined by oral glucose tolerance test before therapy and normalized during therapy. Fasting insulin and insulin resistance being normal at the beginning, significantly increased at 12 months and returned to initial levels at 36 months of GH therapy. Fasting glucose as well as HbA(1c) and triglyceride levels were always normal. The fat mass before GH therapy was increased (39.5%) and dropped into the upper normal range (28.3%) during 3 years of therapy, being correlated with fasting insulin concentration and indices of insulin sensitivity before and after 1 year of therapy. CONCLUSIONS: Children with PWS are characterized by an intact insulin sensitivity with a decrease and a delay of insulin secretion, regardless of moderate obesity or GH treatment. In the present setting, the carbohydrate metabolism is not impaired by GH therapy, but by the excessively increased fat mass.  相似文献   

20.
Serum glucose and serum insulin levels were measured during oral glucose tolerance tests in 100 women, 20-39 years of age, who used the OC (oral contraceptive) preparation Stediril and in a control group of 96 women of the same age group. Significantly lower fasting serum glucose levels were observed after 6 months of OC use. Significant decreases in glucose tolerance were observed among OC users who had taken OCs for longer than 6 months. The blood glucose levels were elevated significantly in this group 60 and 120 minutes after the beginning of the test. No correlation could be found between age and changes in glucose tolerance. No significant differences in fasting serum insulin levels were found in either group. A significant increase in serum insulin levels was observed among women who had used OCs longer than 6 months; this increase was apparent only 120 minutes after the beginning of the test. These changes in glucose tolerance were found to be reversible. Glucose tolerance tests should be preformed once a year on OC users, more often if an abnormality in glucose metabolism, e.g. latent diabetes, is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号