首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of glutathione to a thiyl radical by prostaglandin H synthase was investigated. Ram seminal vesicle microsomes, in the presence of arachidonic acid, oxidized glutathione to its thiyl-free radical metabolite, which was detected by ESR using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. Oxidation of glutathione was dependent on arachidonic acid and inhibited by indomethacin. Peroxides also supported oxidation, indicating that the oxidation was by prostaglandin hydroperoxidase. Glutathione served as a reducingcofactor for the reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid at 1.5-2 times the nonenzymatic rate. Although purified prostaglandin H synthase in the presence of either H2O2 or 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid oxidized glutathione to a thiyl radical, arachidonic acid did not support glutathione oxidation. Glutathione also inhibited cyclooxygenase activity as determined by measuring oxygen incorporation into arachidonic acid. Reverse-phase high pressure liquid chromatography analysis of the arachidonic acid metabolites indicated that the presence of glutathione in an incubation altered the metabolite profile. In the absence of the cofactor, the metabolites were PGD2, PGE2, and 15-hydroperoxy-PGE2 (where PG indicates prostaglandin), while in the presence of glutathione, the only metabolite was PGE2. These results indicate that glutathione not only serves as a cofactor for prostaglandin E isomerase but is also a reducing cofactor for prostaglandin H hydroperoxidase. Assuming that glutathione thiyl-free radical observed in the trapping experiments is involved in the enzymatic reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11,13-eicosatetraenoic acid, then a 1-electron donation from glutathione to prostaglandin hydroperoxidase is indicated.  相似文献   

2.
Quin2 and its analogs BAPTA, 5,5'-dimethyl BAPTA, 5,5'-difluoro BAPTA, fura-2, and indo-1 were developed to measure intracellular calcium concentrations. In this study we investigated whether quin2 and its analogs are susceptible to peroxidase-catalyzed oxidation. The hydroperoxidase activity of prostaglandin H synthase, like other peroxidases, is capable of oxidizing a wide variety of substrates. It was found that quin2 and its analogs served as reducing cofactors for the hydroperoxidase activity of prostaglandin H synthase, undergoing oxidation in the process. Furthermore, arachidonic acid metabolism was stimulated. Oxidation of quin2 and its analogs resulted in the formation of a carbon-centered radical, as could be detected by ESR, and in the formation of formaldehyde. Quin2 fluorescence decreased upon addition of arachidonic acid and prostaglandin H synthase. Furthermore, addition of calcium no longer resulted in an increase in quin2 fluorescence, as was observed prior to the addition of arachidonic acid and the enzyme. This indicates that one or more of the -N-CH2-COOH groups, which are responsible for the binding of calcium, were oxidized by the hydroperoxidase. Since prostaglandin H synthase is present in many cellular systems in which calcium concentrations are modulated, oxidation of the calcium probe might not only affect the measurement of intracellular calcium but could activate arachidonic acid metabolism as well.  相似文献   

3.
Methimazole, an irreversible, mechanism-based (suicide substrate) inhibitor of thyroid peroxidase and lactoperoxidase, also inhibits the oxidation of xenobiotics by prostaglandin hydroperoxidase. The mechanism(s) by which methimazole inhibits prostaglandin H synthase-catalyzed oxidations is not conclusively known. In studies reported here, methimazole inhibited the prostaglandin H synthase-catalyzed oxidation of benzidine, phenylbutazone, and aminopyrine in a concentration-dependent manner. Methimazole poorly supported the prostaglandin H synthase-catalyzed reduction of 5-phenyl-4-pentenyl hydroperoxide to the corresponding alcohol (5-phenyl-4-pentenyl alcohol), suggesting that methimazole is not serving as a competing reducing cosubstrate for the peroxidase. Methimazole is not a mechanism-based inhibitor of prostaglandin hydroperoxidase or horseradish peroxidase since methimazole did not inhibit the peroxidase-catalyzed, benzidine-supported reduction of 5-phenyl-4-pentenyl hydroperoxide. In contrast, methimazole inhibited the reduction of 5-phenyl-4-pentenyl hydroperoxide to 5-phenyl-4-pentenyl alcohol catalyzed by lactoperoxidase, confirming that methimazole is a mechanism-based inhibitor of that enzyme and that such inhibition can be detected by our assay. Glutathione reduces the aminopyrine cation free radical, the formation of which is catalyzed by the hydroperoxidase, back to the parent compound. Methimazole produced the same effect at concentrations equimolar to those required for glutathione. These data indicate that methimazole does not inhibit xenobiotic oxidations catalyzed by prostaglandin H synthase and horseradish peroxidase through direct interaction with the enzyme, but rather inhibits accumulation of oxidation products via reduction of a free radical-derived metabolite(s).  相似文献   

4.
The oxidation of aminopyrine to an aminopyrine cation radical was investigated using a solubilized microsomal preparation or prostaglandin H synthase purified from ram seminal vesicles. Aminopyrine was oxidized to an aminopyrine cation radical in the presence of arachidonic acid, hydrogen peroxide, t-butyl hydroperoxide or 15-hydroperoxyarachidonic acid. Highly purified prostaglandin H synthase, which processes both cyclo-oxygenase and hydroperoxidase activity, oxidized aminopyrine to the free radical. Purified prostaglandin H synthase reconstituted with Mn2+ protoporphyrin IX, which processes only cyclo-oxygenase activity, did not catalyze the formation of the aminopyrine free radical. Aminopyrine stimulated the reduction of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid to 15-hydroxy-5,8,11-13-eicosatetraenoic acid. Approximately 1 molecule of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid was reduced for every 2 molecules of aminopyrine free radical formed, giving a stoichiometry of 1:2. The decay of the aminopyrine radical obeyed second-order kinetics. These results support the proposed mechanism in which aminopyrine is oxidized by prostaglandin H synthase hydroperoxidase to the aminopyrine free radical, which then disproportionates to the iminium cation. The iminium cation is further hydrolyzed to the demethylated amine and formaldehyde. Glutathione reduced the aminopyrine radical to aminopyrine with the concomitant oxidation of GSH to its thiyl radical as detected by ESR of the glutathione thiyl radical adduct.  相似文献   

5.
Sheep vesicular gland cyclooxygenase is destroyed spontaneously when incubated with only substoichiometric amounts of heme. Peroxides may participate in this destruction, since glutathione peroxidase, catalase, and phenol, a cosubstrate for prostaglandin hydroperoxidase, all protect the cyclooxygenase activity. Stoichiometric or greater levels of heme also tend to protect the enzyme from inactivation. Therefore, to achieve optimal recoveries of enzyme activity during purification and storage, the addition of prostaglandin hydroperoxidase cosubstrate, such as phenol, in combination with high levels of heme is recommended. The current understanding of destabilization and protection of cyclooxygenase now allows an interpretation of the previously unexplained phenomenon of slow phenol activation of cyclooxygenase acetone powder preparations. Phenol appears to protect enzyme activity during the slow equilibration of apoenzyme with endogenous heme to form the active holoenzyme. In the absence of phenol, the progressive rise in activity is not seen as the enzyme is vulnerable to heme-induced destruction.  相似文献   

6.
Acinetobacter sp. strain 20B was isolated based on the ability to utilize dimethyl sulfide as the sole sulfur source. Since strain 20B oxidized indole as well as dimethyl sulfide, indigo production by recombinant Escherichia coli clones carrying Acinetobacter DNA was used as a selection for cloning genes encoding dimethyl sulfide oxidation genes. The gene encoding an indole-oxidizing enzyme was also found to oxidize dimethyl sulfide. The dimethyl sulfide-oxidizing enzyme genes consisted of six open reading flames designated dsoABCDEF. The deduced amino acid sequences of dsoABCDEF were homologous with those of the multicomponent phenol hydroxylases. DsoABCDEF oxidized dimethyl sulfide to dimethyl sulfoxide, and dimethyl sulfoxide to dimethyl sulfone.  相似文献   

7.
The gene-encoding HMT2-like sulfide dehydrogenase from Bacillus stearothermophilus JCM2501 was amplified and expressed in Escherichia coli and the enzymatic features were examined. The enzyme was detected mainly in the membrane fraction. It catalyzed the sulfide-dependent menaquinone (MK) reduction showing special enzymatic features distinct from other sulfide-quinone oxidoreductases (SQRs) from autotrophic bacteria. The purified protein from E. coli brought about the sulfide-dependent 2,3-dimethyl-1,4-naphthoquinone (DMN) reduction in vitro. The reduction was accelerated in the presence of either cyanide or 2-mercaptoethanol and phospholipids. The high reduction was followed by a change in Km values for sulfide and DMN. The purified enzyme utilized MK as an electron acceptor in the membrane fraction from E. coli. Under anaerobic conditions, sulfide was oxidized with reduction of fumarate or nitrate via the MK pool. The dehydrogenase was different from SQR in autotrophic bacteria in terms of the low affinity for sulfide and the activity enhancement in the presence of cyanide or 2-mercaptoethanol. The sulfide oxidation via MK in the cellular membrane of Gram-positive bacteria was certified.  相似文献   

8.
Mechanism of heme degradation by heme oxygenase   总被引:5,自引:0,他引:5  
Heme oxygenase catalyzes the three step-wise oxidation of hemin to alpha-biliverdin, via alpha-meso-hydroxyhemin, verdoheme, and ferric iron-biliverdin complex. This enzyme is a simple protein which does not have any prosthetic groups. However, heme and its two metabolites, alpha-meso-hydroxyhemin and verdoheme, combine with the enzyme and activate oxygen during the heme oxygenase reaction. In the conversion of hemin to alpha-meso-hydroxyhemin, the active species of oxygen is Fe-OOH, which self-hydroxylates heme to form alpha-meso-hydroxyhemin. This step determines the alpha-specificity of the reaction. For the formation of verdoheme and liberation of CO from alpha-meso-hydroxyhemin, oxygen and one reducing equivalent are both required. However, the ferrous iron of the alpha-meso-hydroxyheme is not involved in the oxygen activation and unactivated oxygen is reacted on the 'activated' heme edge of the porphyrin ring. For the conversion of verdoheme to the ferric iron-biliverdin complex, both oxygen and reducing agents are necessary, although the precise mechanism has not been clear. The reduction of iron is required for the release of iron from the ferric iron-biliverdin complex to complete total heme oxygenase reaction.  相似文献   

9.
The soybean lipoxygenase I oxygenates the unusual substrate 12-keto-(9Z)-octadecenoic acid methyl ester as indicated by oxygen uptake and spectral changes of the incubation mixture. The main oxygenation products have been isolated by HPLC and identified as 9,12-diketo-(10E)-octadecenoic acid methyl ester and 12-keto-(10E)-dodecenoic acid methyl ester by UV and IR spectroscopy, cochromatography with an authentic standard, gas chromatography/mass spectroscopy, and 1H NMR. In the formation of both compounds the oxygenase and hydroperoxidase activities of the enzyme appear to be involved. These data and the earlier results on the oxygenation of furanoic fatty acids (Boyer et al., 1979) indicate that the lipoxygenase reaction is not restricted to substrates containing a 1,4-pentadiene structure.  相似文献   

10.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   

11.
Prostaglandin H synthase can oxidize arachidonic acid with leuco-dichlorofluorescein as reducing cosubstrate. Addition of 0.5 mM phenol increases the oxidation of leuco-dichlorofluorescein 5-fold, probably by acting as a cyclic intermediate in the oxidation. Tetramethyl-p-phenylenediamine is also oxidized as cosubstrate. Its oxidation is not influenced by phenol. A stoichiometry of close to one mole of tetramethyl-p-phenylenediamine or leuco-dichlorofluorescein consumed per mole of arachidonic acid was found in the initial phase of the reaction. In the presence of phenol + leuco-dichlorofluorescein, the oxidation rate of arachidonic acid is about 40% lower than with phenol alone as cosubstrate. Since dichlorofluorescein has a molar extinction coefficient of 91 · 103 at 502 nm, the oxidation of less than 1 μM leuco-dichlorofluorescein can be detected spectrophotometrically. The rate of extinction change with leuco-dichlorofluorescein (at 502 nm) is about 4-fold more rapid than with tetramethyl-p-phenylenediamine (at 611 nm). With this spectrophotometric assay we have confirmed that arachidonic acid, linolenic acid, adrenic acid, γ-linolenic acid, eicosapentaenoic acid, are substrates for prostaglandin H synthase with decreasing reaction rates in the mentioned order. The same order of reaction rates were found when oxygen consumption was measured. The assay also shows that docosahexaenoic acid is substrate for the enzyme. The reaction rate of the enzyme evidently is decreased both by a n − 3 double bond and by deviation from a 20 carbon chain length of the fatty acid substrate.  相似文献   

12.
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met[O]) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.Key words: immunoglobulin gamma antibody, methionine sulfoxide, oxidation, photo-oxidation, methionine sulfoxide reductase  相似文献   

13.
Protein oxidation and aging   总被引:13,自引:0,他引:13  
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.  相似文献   

14.
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.  相似文献   

15.
Parkinson's disease (PD) is a neurologic disorder characterized by dopaminergic cell death in the substantia nigra. PD pathogenesis involves mitochondrial dysfunction, proteasome impairment, and alpha-synuclein aggregation, insults that may be especially toxic to oxidatively stressed cells including dopaminergic neurons. The enzyme methionine sulfoxide reductase A (MsrA) plays a critical role in the antioxidant response by repairing methionine-oxidized proteins and by participating in cycles of methionine oxidation and reduction that have the net effect of consuming reactive oxygen species. Here, we show that MsrA suppresses dopaminergic cell death and protein aggregation induced by the complex I inhibitor rotenone or mutant alpha-synuclein, but not by the proteasome inhibitor MG132. By comparing the effects of MsrA and the small-molecule antioxidants N-acetylcysteine and vitamin E, we provide evidence that MsrA protects against PD-related stresses primarily via methionine sulfoxide repair rather than by scavenging reactive oxygen species. We also demonstrate that MsrA efficiently reduces oxidized methionine residues in recombinant alpha-synuclein. These findings suggest that enhancing MsrA function may be a reasonable therapeutic strategy in PD.  相似文献   

16.
Since H2O2 is one of the major biologically available peroxides, its ability to support hydroperoxidase activity of highly purified soybean lipoxygenase was examined by monitoring co-oxidation of selected xenobiotics. All of the eight chemicals tested were found to be oxidized in the presence of H2O2. Tetramethylbenzidine oxidation was completely inhibited by the classical lipoxygenase inhibitor nordihydroguaiaretic acid. The reaction was enzymatic in nature and exhibited a acidic pH optimum. The data clearly indicate, for the first time, that H2O2 can efficiently replace fatty acid hydroperoxide in a xenobiotic oxidation reaction medicated by the hydroperoxidase activity of lipoxygenase.  相似文献   

17.
The pentapeptide methionine-enkephalin (Met-enk) is a natural opiate that inhibits signals of pain. The N-terminal tyrosyl residue is important in the recognition of the peptide by its receptor. In oxidative stress, this residue can be oxidized by reactive oxygen species. The one-electron oxidation of Met-enk and of tert-butoxycarbonyl-methionine-enkephalin (Boc-Met-enk) was studied by gamma- and pulse radiolysis in the absence and in the presence of superoxide radical anions (O(2)(.-)) and oxygen, using azidyl radicals as oxidants. Without oxygen, both peptides behaved similarly. The tyrosyl radical resulting from the oxidation of tyrosyl residue produced the dimer linked by dityrosines. Methionine was also oxidized to its sulfoxide; however, this reaction is of minor importance. When O(2)(.-) was present, it added to tyrosyl radical giving a hydroperoxide. For Met-enk, this adduct cyclized via an intramolecular Michael addition of the amine on the aromatic ring. Conversely, for Boc-Met-enk, the adduct eliminated oxygen which led to 97% regeneration of the nonmodified peptide. Blocking the terminal amine group had thus a key role in protection of the tyrosyl residue. This finding might be exploited in the search for new pain inhibitors.  相似文献   

18.
Naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 is a multicomponent enzyme system that oxidized naphthalene to cis-(1R, 2S)-dihydroxy-1,2-dihydronaphthalene. The terminal oxygenase component B was purified to homogeneity by a three-step procedure that utilized ion-exchange and hydrophobic interaction chromatography. The purified enzyme oxidized naphthalene only in the presence of NADH, oxygen, and partially purified preparations of components A and C. An estimated Mr of 158,000 was obtained by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed the presence of two subunits with molecular weights of ca. 55,000 and 20,000, indicative of an alpha 2 beta 2 quaternary structure. Absorption spectra of the oxidized enzyme showed maxima at 566 (shoulder), 462, and 344 nm, which were replaced by absorption maxima at 520 and 380 nm when the enzyme was reduced anaerobically by stoichiometric quantities of NADH in the presence of the other two components of the naphthalene dioxygenase system. Component B bound naphthalene. Enzyme-bound naphthalene was oxidized to product upon the addition of components A and C, NADH, and O2. These results, together with the detection of the presence of 6.0 g-atoms of iron and 4.0 g-atoms of acid-labile sulfur per mol of the purified enzyme, suggest that component B of the naphthalene dioxygenase system is an iron-sulfur protein which functions in the terminal step of naphthalene oxidation.  相似文献   

19.
Cytochrome c (cyt c) is an electron carrier involved in the mitochondrial respiratory chain and a critical protein in apoptosis. The oxidation of cytochrome c can therefore be relevant biologically. We studied whether cytochrome c underwent the attack of reactive oxygen species (ROS) during ionizing irradiation-induced oxidative stress. ROS were generated via water radiolysis under ionizing radiation (IR) in vitro. Characterization of oxidation was performed by mass spectrometry, after tryptic digestion, and UV-visible spectrophotometry. When both hydroxyl and superoxide free radicals were generated during water radiolysis, only five tryptic peptides of cyt c were reproducibly identified as oxidized according to a relation that was dependent of the dose of ionizing radiation. The same behavior was observed when hydroxyl free radicals were specifically generated (N(2)O-saturated solutions). Specific oxidation of cyt c by superoxide free radicals was performed and has shown that only one oxidized peptide (MIFAGIK+16), corresponding to the oxidation of Met80 into methionine sulfoxide, exhibited a radiation dose-dependent formation. In addition, the enzymatic site of cytochrome c was sensitive to the attack of both superoxide and hydroxyl radicals as observed through the reduction of Fe(3+), the degradation of the protoporphyrin IX and the oxidative disruption of the Met80-Fe(3+) bond. Noteworthy, the latter has been involved in the conversion of cyt c to a peroxidase. Finally, Met80 appears as the most sensitive residue towards hydroxyl but also superoxide free radicals mediated oxidation.  相似文献   

20.
11-Hydroperoxy-eicosa-5,8,12,14-tetraenoic acid [11-HPETE] was prepared by chromatographic separation of the hydroperoxides formed from the singlet oxygen oxidation of arachidonic acid [20:4]. 1-[14C]-HPETE was incubated with prostaglandin endoperoxide synthetase preparations from ram seminal vesicles. No prostaglandins products deriving from 11-HPETE were detected in any of the incubations. 11-Hydroxy-eicosa-5,8,12,14-tetraenoic acid [11-HETE], formed by the action of the hydroperoxidase component of prostaglandin endoperoxidase synthetase was the major product formed. The peroxidase activity was absolutely dependent on epinephrine and was stimulated by hematin. 11-HPETE does not appreciably effect the extent of conversion of arachidonic acid into prostaglandin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号