首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been shown experimentally that the second heart sound is produced by diastolic vibrations of the closed aortic valve. In the present paper a mathematical model of this vibration is developed from first principles. The model assumes a one dimensional but non-linear fluid behavior. The problem is coupled through a non-linear, planar valve. A solution is obtained using the method of characteristics developed in finite difference form. The resulting valve frequency and amplitude are in good agreement with patient data. The model predicts a strong dependency of response on the valve forcing function and valve stiffness; and a weaker dependency of response on valve mass.  相似文献   

2.
A modification to a previously described maximum likelihood approach to non-linear ordination is presented. It involves weighting quantitative measures of species importance to ensure that changes in values along a gradient are given equal weight irrespective of their magnitude. The maximum likelihood method was tested with artificial data based on a model incorporating various types of non-linear species responses. Symmetrical and asymmetrical response surfaces, with and without central depression, were used and the method was shown to be reasonably robust. In tests on both real and artificial data it proved superior to other methods.  相似文献   

3.
A non-linear reaction diffusion model of a negative feedback epigenetic control system is presented. The model involves synthesis of the mitotic inducing and inhibiting proteins, simultaneously with intercellular self-diffusion and cross-diffusion of the latter only. The importance of negative cross-diffusion for creating a regular dissipative structure is shown. A bifurcation analysis of the non-linear diffusive system has been performed and it is concluded that bifurcation is supercritical. Lastly, using Liapunov's direct method, it is shown that the pattern evolved by the system is globally asymptotically stable.  相似文献   

4.
MOTIVATION: The genetic basis of complex traits often involves the function of multiple genetic factors, their interactions and the interaction between the genetic and environmental factors. Gene-environment (G×E) interaction is considered pivotal in determining trait variations and susceptibility of many genetic disorders such as neurodegenerative diseases or mental disorders. Regression-based methods assuming a linear relationship between a disease response and the genetic and environmental factors as well as their interaction is the commonly used approach in detecting G×E interaction. The linearity assumption, however, could be easily violated due to non-linear genetic penetrance which induces non-linear G×E interaction. RESULTS: In this work, we propose to relax the linear G×E assumption and allow for non-linear G×E interaction under a varying coefficient model framework. We propose to estimate the varying coefficients with regression spline technique. The model allows one to assess the non-linear penetrance of a genetic variant under different environmental stimuli, therefore help us to gain novel insights into the etiology of a complex disease. Several statistical tests are proposed for a complete dissection of G×E interaction. A wild bootstrap method is adopted to assess the statistical significance. Both simulation and real data analysis demonstrate the power and utility of the proposed method. Our method provides a powerful and testable framework for assessing non-linear G×E interaction.  相似文献   

5.
A non-linear age-structured population dynamic model described by partial integro-differential equations is considered, where the non-linear term reflects the interaction among individuals. This non-linear model is interpreted as a perturbed linear one. An approximation method based on the ideas of averaging, of a slow time transformation and a power series expansion is suggested. The asymptotic properties of the approximate solution are analyzed. It is shown that the approximate solution remains close to the true solution ast .  相似文献   

6.
In this paper, we present a new methodology for the deformation of soft objects by drawing an analogy between the Poisson equation and elastic deformation from the viewpoint of energy propagation. The potential energy stored due to a deformation caused by an external force is calculated and treated as the source injected into the Poisson system, as described by the law of conservation of energy. An improved Poisson model is developed for propagating the energy generated by the external force in a natural manner. An autonomous cellular neural network (CNN) model is established by using the analogy between the Poisson equation and CNN to solve the Poisson model for the real-time requirement of soft object deformation. A method is presented to derive the internal forces from the potential energy distribution. The proposed methodology models non-linear materials with the non-linear Poisson equation and thus non-linear CNN, rather than geometric non-linearity. It not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply modifying constitutive coefficients. A haptic virtual reality system has been developed for deformation simulation with force feedback. Examples are presented to demonstrate the efficiency of the proposed methodology.  相似文献   

7.
In this paper, we present a new methodology for the deformation of soft objects by drawing an analogy between the Poisson equation and elastic deformation from the viewpoint of energy propagation. The potential energy stored due to a deformation caused by an external force is calculated and treated as the source injected into the Poisson system, as described by the law of conservation of energy. An improved Poisson model is developed for propagating the energy generated by the external force in a natural manner. An autonomous cellular neural network (CNN) model is established by using the analogy between the Poisson equation and CNN to solve the Poisson model for the real-time requirement of soft object deformation. A method is presented to derive the internal forces from the potential energy distribution. The proposed methodology models non-linear materials with the non-linear Poisson equation and thus non-linear CNN, rather than geometric non-linearity. It not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply modifying constitutive coefficients. A haptic virtual reality system has been developed for deformation simulation with force feedback. Examples are presented to demonstrate the efficiency of the proposed methodology.  相似文献   

8.
Building on the linear network thermodynamic model presented in the first paper in this series (Mikulecky, Wiegand &; Shiner, 1977), a method of non-linear analysis is developed based mainly on the methods of Chua (1969). Using coupled salt and volume flow through membranes as an example, it is shown that the Kedem &; Katchalsky (1963a,b,c) linear model of series combinations of membranes behaves in a physically unrealistic manner (negative and infinite concentrations occur in the compartment between the membranes). Using the model introduced by Patlak, Goldstein &; Hoffman (1963) to obtain characteristics for a non-linear 2-port, the series network is well behaved and self-regulated. In the coordinate system of the linear reciprocal 2-port, the non-linear 2-port is shown to be a non-reciprocal element. Another co-ordinate system, which utilizes unidirectional fluxes (as measured by isotope fluxes, for example) and their conjugate driving forces, shows the non-linear 2-port to be separable in the sense of Li (1962) and Rosen (1968). A set of three pseudo-independent force-flow pairs completely characterizes the system and is compatible with a very simple non-linear network analysis which utilizes experimentally accessible and practical parameters such as the unidirectional solute fluxes, concentrations in the baths, volume flow and the hydrostatic minus effective osmotic pressure. As constitutive relations, the forward and backward permeabilities, which are dependent on volume flow and the filtration coefficient are all that are needed. A reflection coefficient appears in the driving force conjugate to volume flow in that the effective osmotic pressure is δΔπ and thus four independent coefficients, two of which depend on volume flow, are needed to determine the system. From the network analysis, the global properties of the series and/or parallel combinations of non-linear 2-ports are readily obtained. Although applied to a particular example, these non-linear methods are perfectly general. They are essentially the graphical form of the algebraic analysis in the linear theory, and are essentially based on the generalized version of Kirchhoff's laws used in graph and network theory. In the particular case of coupled solute and volume flow through membranes the non-linear element has a natural piecewise linearization which allows the linear theory to be applied using different values for the elements in each region.In an initial analysis, a linear network is drawn using the I-equivalent network of 1-port elements to model the linear 2-port in a series system. From this over-simplication a great deal of the qualitative behavior of the system can be visualized. For example, it is an easy way to see that solute will be accumulated or depleted in the central compartment between the membranes in an asymmetric series system. After this the non-linear analysis is used to further quantitatively describe the system's behavior and such phenomena as rectification of volume flow in the series membrane system. An appendix introduces a general theory for a class of non-linear transport phenomena.  相似文献   

9.
Stoichiometric Network Theory is a constraints-based, optimization approach for quantitative analysis of the phenotypes of large-scale biochemical networks that avoids the use of detailed kinetics. This approach uses the reaction stoichiometric matrix in conjunction with constraints provided by flux balance and energy balance to guarantee mass conserved and thermodynamically allowable predictions. However, the flux and energy balance constraints have not been effectively applied simultaneously on the genome scale because optimization under the combined constraints is non-linear. In this paper, a sequential quadratic programming algorithm that solves the non-linear optimization problem is introduced. A simple example and the system of fermentation in Saccharomyces cerevisiae are used to illustrate the new method. The algorithm allows the use of non-linear objective functions. As a result, we suggest a novel optimization with respect to the heat dissipation rate of a system. We also emphasize the importance of incorporating interactions between a model network and its surroundings.  相似文献   

10.
The non-linear mechanical behaviour of porcine brain tissue in large shear deformations is determined. An improved method for rotational shear experiments is used, producing an approximately homogeneous strain field and leading to an enhanced accuracy. Results from oscillatory shear experiments with a strain amplitude of 0.01 and frequencies ranging from 0.04 to 16 Hz are given. The immediate loss of structural integrity, due to large deformations, influencing the mechanical behaviour of brain tissue, at the time scale of loading, is investigated. No significant immediate mechanical damage is observed for these shear deformations up to strains of 0.45. Moreover, the material behaviour during complex loading histories (loading-unloading) is investigated. Stress relaxation experiments for strains up to 0.2 and constant strain rate experiments for shear rates from 0.01 to 1 s(-1) and strains up to 0.15 are presented. A new differential viscoelastic model is used to describe the mechanical response of brain tissue. The model is formulated in terms of a large strain viscoelastic framework and considers non-linear viscous deformations in combination with non-linear elastic behaviour. This constitutive model is readily applicable in three-dimensional head models in order to predict the mechanical response of the intra-cranial contents due to an impact.  相似文献   

11.
A mathematical model for the transmission of two interacting classes of mastitis causing bacterial pathogens in a herd of dairy cows is presented and applied to a specific data set. The data were derived from a field trial of a specific measure used in the control of these pathogens, where half the individuals were subjected to the control and in the others the treatment was discontinued. The resultant mathematical model (eight non-linear simultaneous ordinary differential equations) therefore incorporates heterogeneity in the host as well as the infectious agent and consequently the effects of control are intrinsic in the model structure. A structural identifiability analysis of the model is presented demonstrating that the scope of the novel method used allows application to high order non-linear systems. The results of a simultaneous estimation of six unknown system parameters are presented. Previous work has only estimated a subset of these either simultaneously or individually. Therefore not only are new estimates provided for the parameters relating to the transmission and control of the classes of pathogens under study, but also information about the relationships between them. We exploit the close link between mathematical modelling, structural identifiability analysis, and parameter estimation to obtain biological insights into the system modelled.  相似文献   

12.
A multiscale approach for modelling wave propagation in an arterial segment   总被引:1,自引:0,他引:1  
A mathematical model of blood flow through an arterial vessel is presented and the wave propagation in it is studied numerically. Based on the assumption of long wavelength and small amplitude of the pressure waves, a quasi-one-dimensional (1D) differential model is adopted. It describes the non-linear fluid-wall interaction and includes wall deformation in both radial and axial directions. The 1D model is coupled with a six compartment lumped parameter model, which accounts for the global circulatory features and provides boundary conditions. The differential equations are first linearized to investigate the nature of the propagation phenomena. The full non-linear equations are then approximated with a numerical finite difference method on a staggered grid. Some numerical simulations show the characteristics of the wave propagation. The dependence of the flow, of the wall deformation and of the wave velocity on the elasticity parameter has been highlighted. The importance of the axial deformation is evidenced by its variation in correspondence of the pressure peaks. The wave disturbances consequent to a local stiffening of the vessel and to a compliance jump due to prosthetic implantations are finally studied.  相似文献   

13.
As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.  相似文献   

14.
15.
16.
In orthodontics, the 3D translational and rotational movement of a tooth is determined by the force–moment system applied and the location of the tooth’s centre of resistance (CR). Because of the practical constraints of in-vivo experiments, the finite element (FE) method is commonly used to determine the CR. The objective of this study was to investigate the geometric model details required for accurate CR determination, and the effect of material non-linearity of the periodontal ligament (PDL). A FE model of a human lower canine derived from a high-resolution µCT scan (voxel size: 50 µm) was investigated by applying four different modelling approaches to the PDL. These comprised linear and non-linear material models, each with uniform and realistic PDL thickness. The CR locations determined for the four model configurations were in the range 37.2–45.3% (alveolar margin: 0%; root apex: 100%). We observed that a non-linear material model introduces load-dependent results that are dominated by the PDL regions under tension. Load variation within the range used in clinical orthodontic practice resulted in CR variations below 0.3%. Furthermore, the individualized realistic PDL geometry shifted the CR towards the alveolar margin by 2.3% and 2.8% on average for the linear and non-linear material models, respectively. We concluded that for conventional clinical therapy and the generation of representative reference data, the least sophisticated modelling approach with linear material behaviour and uniform PDL thickness appears sufficiently accurate. Research applications that require more precise treatment monitoring and planning may, however, benefit from the more accurate results obtained from the non-linear constitutive law and individualized realistic PDL geometry.  相似文献   

17.
The present work describes the biomechanical modeling of human postural mechanics in the saggital plane and the use of optimal control to generate open-loop raising-up movements from a squatting position. The biomechanical model comprises 10 equivalent musculotendon actuators, based on a 40 muscles model, and three links (shank, thigh and HAT-Head, Arms and Trunk). Optimal control solutions are achieved through algorithms based on the Consistent Approximations Theory (Schwartz and Polak, 1996), where the continuous non-linear dynamics is represented in a discrete space by means of a Runge-Kutta integration and the control signals in a spline-coefficient functional space. This leads to non-linear programming problems solved by a sequential quadratic programming (SQP) method. Due to the highly non-linear and unstable nature of the posture dynamics, numerical convergence is difficult, and specific strategies must be implemented in order to allow convergence. Results for control (muscular excitations) and angular trajectories are shown using two final simulation times, as well as specific control strategies are discussed.  相似文献   

18.
The Volterra series is a well-known method of describing non-linear dynamic systems. A major limitation of this technique is the difficulty involved in the calculation of the kernels. More recently, artificial neural networks have been used to produce black box models of non-linear dynamic systems. In this paper we show how a certain class of artificial neural networks are equivalent to Volterra series and give the equation for the nth order Volterra kernel in terms of the internal parameters of the network. The technique is then illustrated using a specific non-linear system. The kernels obtained by the method described in the paper are compared with those obtained by a Toeplitz matrix inversion technique. Received: 4 June 1993/Accepted in revised form: 2 March 1994  相似文献   

19.
We present a novel method for the implementation of hyperelastic finite strain, non-linear strain-energy functions for biological membranes in an explicit finite element environment. The technique is implemented in LS-DYNA but may also be implemented in any suitable non-linear explicit code. The constitutive equations are implemented on the foundation of a co-rotational uniformly reduced Hughes-Liu shell. This shell is based on an updated-Lagrangian formulation suitable for relating Cauchy stress to the rate-of-deformation, i.e. hypo-elasticity. To accommodate finite deformation hyper-elastic formulations, a co-rotational deformation gradient is assembled over time, resulting in a formulation suitable for pseudo-hyperelastic constitutive equations that are standard assumptions in biomechanics. Our method was validated by comparison with (1) an analytic solution to a spherically-symmetric dynamic membrane inflation problem, incorporating a Mooney-Rivlin hyperelastic equation and (2) with previously published finite element solutions to a non-linear transversely isotropic inflation problem. Finally, we implemented a transversely isotropic strain-energy function for mitral valve tissue. The method is simple and accurate and is believed to be generally useful for anyone who wishes to model biologic membranes with an experimentally driven strain-energy function.  相似文献   

20.
We propose a statistical model for estimating gene expression using data from multiple laser scans at different settings of hybridized microarrays. A functional regression model is used, based on a non-linear relationship with both additive and multiplicative error terms. The function is derived as the expected value of a pixel, given that values are censored at 65 535, the maximum detectable intensity for double precision scanning software. Maximum likelihood estimation based on a Cauchy distribution is used to fit the model, which is able to estimate gene expressions taking account of outliers and the systematic bias caused by signal censoring of highly expressed genes. We have applied the method to experimental data. Simulation studies suggest that the model can estimate the true gene expression with negligible bias. AVAILABILITY: FORTRAN 90 code for implementing the method can be obtained from the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号