首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atypical protein kinase C (PKC) isotype-specific interacting protein (ASIP) specifically interacts with the atypical protein kinase C isozymes PKClambda and PKCzeta. ASIP and atypical PKC, as well as their Caenorhabditis elegans counterparts (PAR-3 and PKC-3, respectively), are thought to coordinately participate in intracellular signaling that contributes to the maintenance of cellular polarity and to the formation of junctional complexes. The potential role of ASIP in other cellular functions of atypical PKC was investigated by examining the effect of overexpression of ASIP on insulin-induced glucose uptake, previously shown to be mediated through PKClambda, in 3T3-L1 adipocytes. When overexpressed in these cells, which contain PKClambda but not PKCzeta, ASIP was co-immunoprecipitated with endogenous PKClambda but not with PKCepsilon or with Akt. The subcellular localization of PKClambda was also altered in cells overexpressing ASIP. Overexpression of ASIP inhibited insulin stimulation of both glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but it did not inhibit glucose uptake induced by either growth hormone or hyperosmolarity both of which promote glucose uptake in a PKClambda-independent manner. Moreover, glucose uptake stimulated by a constitutively active mutant of PKClambda, but not that induced by an active form of Akt, was inhibited by ASIP. Insulin-induced activation of PKClambda, but not that of phosphoinositide 3-kinase or Akt, was also inhibited by overexpression of ASIP. These data suggest that overexpression of ASIP inhibits insulin-induced glucose uptake by specifically interfering with signals transmitted through PKClambda.  相似文献   

2.
The von Hippel-Lindau tumor-suppressor protein (pVHL) forms a protein complex (VCB-Cul2) with elongin C, elongin B, Cul-2, and Rbx1, which functions as a ubiquitin-protein ligase (E3). The alpha-subunits of the hypoxia-inducible factors have been identified as targets for the VCB-Cul2 ubiquitin ligase. However, a variety of cellular defects caused by the depletion of pVHL cannot be explained solely by the ubiquitin-mediated degradation of hypoxia-inducible factor-alpha. We show here that a member of the atypical protein kinase C (PKC) group, PKClambda, is ubiquitinated by the pVHL-containing E3 enzyme. An active PKClambda mutant is ubiquitinated more extensively than wild-type PKClambda in HEK293 cells, and the ubiquitination is further enhanced by the overexpression of pVHL. The activation of wild-type PKClambda by serum stimulation of cells enhances the ubiquitination of the protein, supporting the notion that active PKClambda is preferentially ubiquitinated by VCB-Cul2 ubiquitin ligase. Furthermore, we show that PKClambda can be ubiquitinated in vitro in a cell-free ubiquitination assay using purified recombinant components including VCB-Cul2. Given the known function of aPKC in the regulation of cell polarity and cell growth, PKClambda may be a target of pVHL in its function as a tumor suppressor.  相似文献   

3.
4.
We have previously shown that interleukin 1 (IL-1)-receptor-generated ceramide induces growth arrest in smooth muscle pericytes by activating an upstream kinase in the stress-activated protein kinase (SAPK) cascade. We now report the mechanism by which ceramide activates the SAPK signaling pathway in human embryonic kidney cells (HEK-293). We demonstrate that ceramide activation of protein kinase C zeta (PKCzeta) mediates SAPK signal complex formation and subsequent growth suppression. Ceramide directly activates both immunoprecipitated and recombinant human PKCzeta in vitro. Additionally, ceramide activates SAPK activity, which is blocked with a dominant-negative mutant of PKCzeta. Co-immunoprecipitation studies reveal that ceramide induces the association of SAPK with PKCzeta, but not with PKCepsilon. In addition, ceramide treatment induces PKCzeta association with phosphorylated SEK and MEKK1, elements of the SAPK signaling complex. The biological role of ceramide to induce cell cycle arrest is mimicked by overexpression of a constitutively active PKCzeta. Together, these studies demonstrate that ceramide induces cell cycle arrest by enhancing the ability of PKCzeta to form a signaling complex with MEKK1, SEK, and SAPK.  相似文献   

5.
Regulation of cell polarity is an important biological event that governs diverse cell functions such as localization of embryonic determinants and establishment of tissue and organ architecture. The Rho family GTPases and the polarity complex Par6/Par3/atypical protein kinase C (PKC) play a key role in the signaling pathway, but the molecules that regulate upstream signaling are still not known. Here we identified the guanine nucleotide exchange factor ECT2 as an activator of the polarity complex. ECT2 interacted with Par6 as well as Par3 and PKCzeta. Coexpression of Par6 and ECT2 efficiently activated Cdc42 in vivo. Overexpression of ECT2 also stimulated the PKCzeta activity, whereas dominant-negative ECT2 inhibited the increase in PKCzeta activity stimulated by Par6. ECT2 localization was detected at sites of cell-cell contact as well as in the nucleus of MDCK cells. The expression and localization of ECT2 were regulated by calcium, which is a critical regulator of cell-cell adhesion. Together, these results suggest that ECT2 regulates the polarity complex Par6/Par3/PKCzeta and possibly plays a role in epithelial cell polarity.  相似文献   

6.
Protein kinase Czeta (PKCzeta) is an atypical PKC isoform that plays an important role in supporting cell survival but the mechanism(s) involved is not fully understood. Bax is a major member of the Bcl-2 family that is required for apoptotic cell death. Because Bax is extensively co-expressed with PKCzeta in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells, it is possible that Bax may act as the downstream target of PKCzeta in regulating survival and chemosensitivity of lung cancer cells. Here we discovered that treatment of cells with nicotine not only enhances PKCzeta activity but also results in Bax phosphorylation and prolonged cell survival, which is suppressed by a PKCzeta specific inhibitor (a myristoylated PKCzeta pseudosubstrate peptide). Purified, active PKCzeta directly phosphorylates Bax in vitro. Overexpression of wild type or the constitutively active A119D but not the dominant negative K281W PKCzeta mutant results in Bax phosphorylation at serine 184. PKCzeta co-localizes and interacts with Bax at the BH3 domain. Specific depletion of PKCzeta by RNA interference blocks nicotine-stimulated Bax phosphorylation and enhances apoptotic cell death. Intriguingly, forced expression of wild type or A119D but not K281W PKCzeta mutant results in accumulation of Bax in cytoplasm and prevents Bax from undergoing a conformational change with prolonged cell survival. Purified PKCzeta can directly dissociate Bax from isolated mitochondria of C2-ceramide-treated cells. Thus, PKCzeta may function as a physiological Bax kinase to directly phosphorylate and interact with Bax, which leads to sequestration of Bax in cytoplasm and abrogation of the proapoptotic function of Bax.  相似文献   

7.
We have reported that ceramide mediates binding of atypical protein kinase C (PKC) zeta to its inhibitor protein, PAR-4 (prostate apoptosis response-4), thereby inducing apoptosis in differentiating embryonic stem cells. Using a novel method of lipid vesicle-mediated affinity chromatography, we showed here that endogenous ceramide binds directly to the PKCzeta.PAR-4 complex. Ceramide and its analogs activated PKCzeta prior to binding to PAR-4, as determined by increased levels of phosphorylated PKCzeta and glycogen synthase kinase-3beta and emergence of a PAR-4-to-phosphorylated PKCzeta fluorescence resonance energy transfer signal that co-localizes with ceramide. Elevated expression and activation of PKCzeta increased cell survival, whereas expression of PAR-4 promoted apoptosis. This suggests that PKCzeta counteracts apoptosis, unless its ceramide-induced activation is compromised by binding to PAR-4. A luciferase reporter assay showed that ceramide analogs activate nuclear factor (NF)-kappaB unless PAR-4-dependent inhibition of PKCzeta suppresses NF-kappaB activation. Taken together, our results show that direct physical association with ceramide and PAR-4 regulates the activity of PKCzeta. They also indicate that this interaction regulates the activity of glycogen synthase kinase-3beta and NF-kappaB.  相似文献   

8.
WW domain-containing proteins are found in all eukaryotic cells and they are involved in the regulation of a wide variety of cellular functions. We recently identified the neuronal protein KIBRA as novel member of this family of signal transducers. In this report, we describe the identification of protein kinase C (PKC) zeta as a KIBRA-interacting protein. PKCzeta is known to play an important role in synaptic plasticity and memory formation but its specific targets are not well known. Our studies presented here revealed that KIBRA is a novel substrate for PKCzeta and suggest that PKCzeta phosphorylation may regulate the cellular function of KIBRA.  相似文献   

9.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

10.
We examined the upstream kinases for mitogen-activated protein kinase (MAPK) activation during ischemic hypoxia and reoxygenation using H9c2 cells derived from rat cardiomyocytes. Protein kinase C (PKC)zeta, an atypical PKC isoform mainly expressed in rat heart, has been shown to act as an upstream kinase of MAPK during ischemic hypoxia and reoxygenation by analyses with PKC inhibitors, antisense DNA, a dominant negative kinase defective mutant, and constitutively active mutants of PKCzeta. Immunocytochemical observations show PKCzeta staining in the nucleus during ischemic hypoxia and reoxygenation when phosphorylated MAPK is also detected in the nucleus. This nuclear localization of PKCzeta is inhibited by treatment with wortmannin, a phosphoinositide 3-kinase inhibitor that also inhibits MAPK activation in a dose-dependent manner. This is supported by the inhibition of MAPK phosphorylation by another blocker of phosphoinositide 3-kinase, LY294002. An upstream kinase of MAPK, MEK1/2, is significantly phosphorylated 15 min after reoxygenation and observed mainly in the nucleus, whereas it is present in the cytoplasm in serum stimulation. The phosphorylation of MEK is blocked by PKC inhibitors and phosphoinositide 3-kinase inhibitors, as observed in the case of MAPK phosphorylation. These observations indicate that PKCzeta, which is activated by phosphoinositide 3-kinase, induces MAPK activation through MEK in the nucleus during reoxygenation after ischemic hypoxia.  相似文献   

11.
12.
FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.  相似文献   

13.
PKClambda/iota belongs to the third group of the PKC family, atypical PKC (aPKC), together with PKCzeta based on its sequence divergence from conventional and novel PKCs observed not only in the N-terminal regulatory domain but also in the kinase domain. Although one of the most distinct features of aPKC is its single, unrepeated cysteine-rich domain, recent studies have revealed that the N-terminal regulatory domain has additional aPKC-specific structural motifs involved in various protein-protein interactions, which are important for the regulation and the subcellular targeting of aPKC. The identification of aPKC-specific binding proteins has significantly facilitated our understanding of the activation mechanism as well as the physiological function of aPKC at the molecular level. In particular, the finding that the mammalian homologs of the Caenorhabditis elegans proteins, PAR-3 and PAR-6, bind aPKC unexpectedly opens a new avenue for exploring a thus far completely unrecognized critical function of aPKC, that is, as a component of an evolutionarily conserved cell polarity machinery. Together with the great progress in the genome project as well as in the genetic analysis of model organisms, these advances are leading us into the new era of aPKC study in which functional divergence between PKClambda/iota and zeta can be discussed in elaborately.  相似文献   

14.
Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms by which vanadate mediates adverse effects are not well understood. The present study investigated the vanadate-induced phosphorylation of Akt and p70S6K, two kinases known to be vital for cell survival, growth, transformation, and transition of the cell cycle in mammals. Exposure of mouse epidermal JB6 cells to vanadium led to phosphorylation of Akt and p70S6K in a time- and dose-dependent manner. Vanadium exposure also caused translocation of atypical isoforms of PKC (lambda, zeta) from the cytosol to the membrane, but had no effect on PKCalpha translocation, suggesting that the atypical PKCs (aPKC) were specifically involved in vanadium-induced cellular response. Importantly, overexpression of a dominant negative mutant PKClambda blocked Akt phosphorylation at Ser473 and Thr308, whereas it did not inhibit p70S6k phosphorylation at Thr389 and Thr421/Ser424, suggesting that aPKC activation is specifically involved in vanadium-induced activation of Akt, but not in activation of p70S6k. Furthermore, vanadium-induced p70S6k phosphorylation at Thr389 and Thr421/Ser424 and Akt phosphorylation at Thr308 occurred through a PI-3K-dependent pathway because a PI-3K dominant negative mutant inhibited induction as compared with vector control cells. These results indicate that there was a differential role of aPKC in vanadate-induced phosphorylation of Akt and p70S6k, suggesting that signal transduction pathways leading to the activation of Akt and p70S6k were different.  相似文献   

15.
16.
The Zyxin/Ajuba family of cytosolic LIM domain-containing proteins has the potential to shuttle from sites of cell adhesion into the nucleus and thus can be candidate transducers of environmental signals. To understand Ajuba's role in signal transduction pathways, we performed a yeast two-hybrid screen with the LIM domain region of Ajuba. We identified the atypical protein kinase C (aPKC) scaffold protein p62 as an Ajuba binding partner. A prominent function of p62 is the regulation of NF-kappaB activation in response to interleukin-1 (IL-1) and tumor necrosis factor signaling through the formation of an aPKC/p62/TRAF6 multiprotein signaling complex. In addition to p62, we found that Ajuba also interacted with tumor necrosis factor receptor-associated factor 6 (TRAF6) and PKCzeta. Ajuba recruits TRAF6 to p62 and in vitro activates PKCzeta activity and is a substrate of PKCzeta. Ajuba null mouse embryonic fibroblasts (MEFs) and lungs were defective in NF-kappaB activation following IL-1 stimulation, and in lung IKK activity was inhibited. Overexpression of Ajuba in primary MEFs enhances NF-kappaB activity following IL-1 stimulation. We propose that Ajuba is a new cytosolic component of the IL-1 signaling pathway modulating IL-1-induced NF-kappaB activation by influencing the assembly and activity of the aPKC/p62/TRAF6 multiprotein signaling complex.  相似文献   

17.
18.
Rapid signal transduction pathways play a prominent role in mediating neuroprotective actions of estrogen in the CNS. We have previously shown that estrogen-induced neuroprotection of primary cerebrocortical neurons from beta-amyloid peptide (Abeta) toxicity depends on activation of protein kinase C (PKC). PKC activation with phorbol-12-myristate-13-acetate (PMA) also provides neuroprotection in this paradigm. Because the PKC family includes several isoforms that have opposing roles in regulating cell survival, we sought to identify which PKC isoforms contribute to neuroprotection induced by PMA and estrogen. We detected protein expression of multiple PKC isoforms in primary neuron cultures, including conventional (alpha, betaI, betaII), novel (delta, epsilon, theta) and atypical (zeta, iota/lambda) PKC. Using a panel of isoform-specific peptide inhibitors and activators, we find that novel and atypical PKC isoforms do not participate in the mechanism of either PMA or estrogen neuroprotection. In contrast, a selective peptide activator of conventional PKC isoforms provides dose-dependent neuroprotection against Abeta toxicity. In addition, peptide inhibitors of conventional, betaI, or betaII PKC isoforms significantly reduce protection afforded by PMA or 17beta-estradiol. Taken together, these data provide evidence that conventional PKC isoforms mediate phorbol ester and estrogen neuroprotection of cultured neurons challenged by Abeta toxicity.  相似文献   

19.
Basu A  Akkaraju GR 《Biochemistry》1999,38(14):4245-4251
Activation of caspases is critical for the induction of apoptosis. We have shown previously that cell death mediated by the anticancer agent cis-diamminedichloroplatinum(II) (cDDP) is influenced by the protein kinase C (PKC) signal transduction pathway. In the present study, we have examined whether regulation of cDDP sensitivity by PKC involves caspase activation. cDDP caused a time- and concentration-dependent increase in the generation of the catalytic fragment (CF) of novel (n) PKCdelta, nPKCepsilon, and atypical (a) PKCzeta but had little effect on conventional (c) PKCalpha. Cleavage of PKC isozymes was associated with the activation of caspase-3 and -7 but not of caspase-2. PKC activators enhanced cDDP-induced cleavage of these isozymes and activation of caspase-3. Rottlerin, an inhibitor of nPKCdelta, blocked caspase-3 activation and proteolytic cleavage of nPKCdelta by cDDP. Bryostatin 1, which elicits a biphasic concentration-response in potentiating cell death by cDDP, exhibited a similar biphasic effect on cDDP-induced activation of caspase-3 and caspase-7 and the cleavage of poly(ADP-ribose) polymerase; while 1 nM bryostatin 1 induced maximum activation of these caspases, 1 microM bryostatin 1 had little effect. z-DEVD-fmk, an inhibitor of caspase-3-like proteases, prevented cDDP-induced cell death. Bryostatin 1 also induced a similar biphasic down-regulation of nPKCdelta but not of cPKCalpha or nPKCepsilon. These results suggest that nPKCdelta not only acts downstream of caspases but also regulates the activation of caspases and that the biphasic concentration response of bryostatin 1 on cDDP-induced cell death could be explained by its distinct effect on nPKCdelta down-regulation and caspase activation.  相似文献   

20.
Although mitogenic and differentiating factors often activate a number of common signaling pathways, the mechanisms leading to their distinct cellular outcomes have not been elucidated. In a previous report, we demonstrated that mitogen-activated protein (MAP) kinase (ERK) activation by the neurogenic agents fibroblast growth factor (FGF) and nerve growth factor is dependent on protein kinase Cdelta (PKCdelta), whereas MAP kinase activation in response to the mitogen epidermal growth factor (EGF) is independent of PKCdelta in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells. We now show that EGF activates MAP kinase through a PKCzeta-dependent pathway involving phosphatidylinositol 3-kinase and PDK1 in H19-7 cells. PKCzeta, like PKCdelta, acts upstream of MEK, and PKCzeta can potentiate Raf-1 activation by EGF. Inhibition of PKCzeta also blocks EGF-induced DNA synthesis as monitored by bromodeoxyuridine incorporation in H19-7 cells. Finally, in embryonic rat brain hippocampal cell cultures, inhibitors of PKCzeta or PKCdelta suppress MAP kinase activation by EGF or FGF, respectively, indicating that these factors activate distinct signaling pathways in primary as well as immortalized neural cells. Taken together, these results implicate different PKC isoforms as determinants of growth factor signaling specificity within the same cell. Furthermore, these data provide a mechanism whereby different growth factors can differentially activate a common signaling intermediate and thereby generate biological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号