首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In HeLa cells, induction of apoptosis and nuclear factor kappaB (NF-kappaB) activation initiated by TRAIL/Apo2L or the agonistic Apo1/Fas-specific monoclonal antibody anti-APO-1 require the presence of cycloheximide (CHX). Inhibition of caspases prevented TRAIL/anti-APO-1-induced apoptosis, but not NF-kappaB activation, indicating that both pathways bifurcate upstream of the receptor-proximal caspase-8. Under these conditions, TRAIL and anti-APO-1 up-regulated the expression of the known NF-kappaB targets interleukin-6, cellular inhibitor of apoptosis 2 (cIAP2), and TRAF1 (TRAF, tumor necrosis factor receptor-associate factor). In the presence of CHX, the stable overexpression of a deletion mutant of the Fas-associated death domain molecule FADD comprising solely the death domain of the molecule but lacking its death effector domain (FADD-(80-208)) led to the same response pattern as TRAIL or anti-APO-1 treatment. Moreover, the ability of death receptors to induce NF-kappaB activation was drastically reduced in a FADD-deficient Jurkat cell line. TRAIL-, anti-APO-1-, and FADD-(80-208)-initiated gene induction was blocked by a dominant-negative mutant of TRAF2 or the p38 kinase inhibitor SB203580, similar to tumor necrosis factor receptor-1-induced NF-kappaB activation. CHX treatment rapidly down-regulated endogenous cFLIP protein levels, and overexpression of cellular FLICE inhibitory protein (cFLIP) inhibited death receptor-induced NF-kappaB activation. Thus, a novel functional role of cFLIP as a negative regulator of gene induction by death receptors became apparent.  相似文献   

2.
OX40 is a member of the tumor necrosis factor receptor (TNF-R) superfamily. We observed that overexpression of OX40 activated NF-kappaB, which was inhibited by dominant negative forms of TRAF2, NF-kappaB-inducing kinase (NIK), and IkappaB kinase (IKK) alpha. This indicates that OX40 signaling leads to NF-kappaB activation through the same cascade as TNF-R2. We then investigated the negative regulatory function of TRAF3 on OX40-induced NF-kappaB activation. TRAF3 blocked OX40-, TRAF2-induced NF-kappaB activation, but not NIK- and IKKalpha-induced NF-kappaB activation, indicating that TRAF3 blocks the pathway between TRAF2 and NIK. C-terminal deletion mutants as well as the N-terminal deletion mutant of TRAF3 inhibited NF-kappaB activation induced by OX40 or TRAF2. Since TRAF3 bound to OX40 through the C-terminal TRAF domain, the C-terminal domain is likely to work as a dominant negative mutant to compete the recruitment of TRAF2 to the receptor, which transmits the signal from OX40 to the downstream, NIK kinase. On the other hand, the N-terminal domain of TRAF3 seems to affect the downstream of TRAF2 binding. Thus, it is suggested that TRAF3 actively inhibits NF-kappaB activation induced by OX40.  相似文献   

3.
Various members of the tumor necrosis factor (TNF) receptor superfamily activate nuclear factor kappaB (NF-kappaB) and the c-Jun N-terminal kinase (JNK) pathways through their interaction with TNF receptor-associated factors (TRAFs) and NF-kappaB-inducing kinase (NIK). We have previously shown that the cytoplasmic domain of receptor activator of NF-kappaB (RANK) interacts with TRAF2, TRAF5, and TRAF6 and that its overexpression activates NF-kappaB and JNK pathways. Through a detailed mutational analysis of the cytoplasmic domain of RANK, we demonstrate that TRAF2 and TRAF5 bind to consensus TRAF binding motifs located in the C terminus at positions 565-568 and 606-611, respectively. In contrast, TRAF6 interacts with a novel motif located between residues 340 and 358 of RANK. Furthermore, transfection experiments with RANK and its deletion mutants in human embryonic 293 cells revealed that the TRAF6-binding region (340-358), but not the TRAF2 or TRAF5-binding region, is necessary and sufficient for RANK-induced NF-kappaB activation. Moreover, a kinase mutant of NIK (NIK-KM) inhibited RANK-induced NF-kappaB activation. However, RANK-mediated JNK activation required a distal portion (427-603) of RANK containing the TRAF2-binding domain. Thus, our results indicate that RANK interacts with various TRAFs through distinct motifs and activates NF-kappaB via a novel TRAF6 interaction motif, which then activates NIK, thus leading to NF-kappaB activation, whereas RANK most likely activates JNK through a TRAF2-interacting region in RANK.  相似文献   

4.
PKN1 is a fatty acid and Rho-activated serine/threonine protein kinase whose catalytic domain is highly homologous to protein kinase C (PKC) family. In yeast two-hybrid screening for PKN1 binding proteins, we identified tumor necrosis factor alpha (TNFalpha) receptor-associated factor 2 (TRAF2). TRAF2 is one of the major mediators of TNF receptor superfamily transducing TNF signal to various functional targets, including activation of NF-kappaB, JNK, and apoptosis. FLAG-tagged PKN1 was co-immunoprecipitated with endogenous TRAF2 from HEK293 cell lysate, and in vitro binding assay using the deletion mutants of TRAF2 showed that PKN1 directly binds to the TRAF domain of TRAF2. PKN1 has the TRAF2-binding consensus sequences PXQX (S/T) at amino acid residues 580-584 (PIQES), and P580AQ582A mutant was not co-immunoprecipitated with TRAF2. Furthermore, the reduced expression of PKN1 by RNA interference (RNAi) down-regulated TRAF2-induced NF-kappaB activation in HEK293T cells. These results suggest that PKN1 is involved in TRAF2-NF-kappaB signaling pathway.  相似文献   

5.
To investigate CD40 signaling complex formation in living cells, we used green fluorescent protein (GFP)-tagged CD40 signaling intermediates and confocal life imaging. The majority of cytoplasmic TRAF2-GFP and, to a lesser extent, TRAF3-GFP, but not TRAF1-GFP or TRAF4-GFP, translocated into CD40 signaling complexes within a few minutes after CD40 triggering with the CD40 ligand. The inhibitor of apoptosis proteins cIAP1 and cIAP2 were also recruited by TRAF2 to sites of CD40 signaling. An excess of TRAF2 allowed recruitment of TRAF1-GFP to sites of CD40 signaling, whereas an excess of TRAF1 abrogated the interaction of TRAF2 and CD40. Overexpression of TRAF1, however, had no effect on the interaction of TRADD and TRAF2, known to be important for tumor necrosis factor receptor 1 (TNF-R1)-mediated NF-kappaB activation. Accordingly, TRAF1 inhibited CD40-dependent but not TNF-R1-dependent NF-kappaB activation. Moreover, down-regulation of TRAF1 with small interfering RNAs enhanced CD40/CD40 ligand-induced NF-kappaB activation but showed no effect on TNF signaling. Because of the trimeric organization of TRAF proteins, we propose that the stoichiometry of TRAF1-TRAF2 heteromeric complexes ((TRAF2)2-TRAF1 versus TRAF2-(TRAF1)2) determines their capability to mediate CD40 signaling but has no major effect on TNF signaling.  相似文献   

6.
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism.  相似文献   

7.
Lymphotoxin-beta receptor (LTbetaR), a member of the tumor necrosis factor receptor superfamily, is essential for the development and organization of secondary lymphoid tissue. Wild type and mutant LTbetaR containing successive truncations of the cytoplasmic domain were investigated by retrovirus-mediated gene transfer into HT29.14s and in 293T cells by transfection. Wild type receptors accumulated in perinuclear compartments and enhanced responsiveness to ligand-induced cell death and ligand-independent activation of NFkappaB p50 dimers. Coimmunoprecipitation and confocal microscopy mapped the TRAF3 binding site to amino acids PEEGDPG at position 389. However, LTbetaR truncated at position Pro(379) acted as a dominant positive mutant that down-modulated surface expression and recruited TRAF3 to endogenous LTbetaR. This mutant exhibited ligand-independent cell death and activated NF-kappaB p50 dimers. By contrast, truncation at Gly(359) created a dominant-negative mutant that inhibited ligand-induced cell death and activation of NF-kappaB p50/p65 heterodimers. This mutant also blocked accumulation of wild type receptor into perinuclear compartments, suggesting subcellular localization may be crucial for signal transduction. A cryptic TRAF-independent NF-kappaB activating region was identified. These mutants define discrete subregions of a novel proline-rich domain that is required for subcellular localization and signal transduction by the LTbetaR.  相似文献   

8.
FLASH is a protein recently shown to interact with the death effector domain of caspase-8 and is likely to be a component of the death-inducing signaling complex in receptor-mediated apoptosis. Here we show that antisense oligonucleotide-induced inhibition of FLASH expression abolished TNF-alpha-induced activation of NF-kappaB in HEK293 cells, as determined by luciferase reporter gene expression driven by a NF-kappaB responsive promoter. Conversely, overexpression of FLASH dose-dependently activated NF-kappaB, an effect suppressed by dominant negative mutants of TRAF2, NIK, and IKKalpha, and partially by those of TRAF5 and TRAF6. TRAF2 was co-immunoprecipitated with FLASH from the cell extracts of HEK293 cells or HeLa cells stably expressing exogenous FLASH (HeLa/HA-FLASH). Furthermore, serial deletion mapping demonstrated that a domain spanning the residues 856-1191 of FLASH activated NF-kappaB as efficiently as the full-length and could directly bind to TRAF2 in vitro and in the transfected cells. Taken together, these results suggest that FLASH coordinates downstream NF-kappaB activity via a TRAF2-dependent pathway in the TNF-alpha signaling.  相似文献   

9.
10.
11.
12.
13.
The binding of immune complexes to macrophage Fcgamma receptor results in a subsequent inhibition of lipopolysaccharide-stimulated interleukin-12 synthesis without affecting the induction of tumor necrosis factor-alpha. RNA interference targeting MAST205, a 205-kDa serine/threonine kinase, and transfection of dominant negative MAST205 mutants also mimic this type II macrophage phenotype. Our previous epistasis experiments suggested that the position of MAST205 in the TLR4 signal pathway was proximal to the IkappaB kinase complex. We now report that MAST205 forms a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappaB activation. We have identified a peptide (residues 218-233) from the N terminus of MAST205 that, when coupled to a protein transduction domain, inhibits the lipopolysaccharide-stimulated activation of NF-kappaB, modulates the size of the MAST205.TRAF6 complex, and inhibits ubiquitination of TRAF6. A dominant negative N-terminal MAST205 deletion mutant also inhibits TRAF6 ubiquitination. The domain required for degradation of MAST205 after Fcgamma receptor activation resides within the N-terminal 261 residues, and degradation is triggered by protein kinase C isoform phosphorylation of Ser/Thr residues. These results suggest that MAST205 functions as a scaffolding protein controlling TRAF6 activity and, therefore, plays an important role in regulating inflammatory responses.  相似文献   

14.
Tumor necrosis factor (TNF) superfamily receptors typically induce both NF-kappaB and JNK activation by recruiting the TRAF2 signal transduction protein to their cytoplasmic domain. The type 2 TNF receptor (TNFR2), however, is a poor activator of these signaling pathways despite its high TRAF2 binding capability. This apparent paradox is resolved here by the demonstration that TNFR2 carries a novel carboxyl-terminal TRAF2-binding site (T2bs-C) that prevents the delivery of activation signals from its conventional TRAF2-binding site (T2bs-N). T2bs-C does not conform to canonical TRAF2 binding motifs and appears to bind TRAF2 indirectly via an as yet unidentified intermediary. Specific inactivation of T2bs-N by site-directed mutagenesis eliminated most of the TRAF2 recruited to the TNFR2 cytoplasmic domain but had no effect on ligand-dependent activation of the NF-kappaB or JNK pathways. By contrast, inactivation of T2bs-C had little effect on the amount of TRAF2 recruited but greatly enhanced ligand-dependent NF-kappaB and JNK activation. In wild-type TNFR2 therefore, T2bs-C acts in a dominant fashion to attenuate signaling by the intrinsically more active T2bs-N but not by preventing TRAF2 recruitment. This unique uncoupling of TRAF2 recruitment and signaling at T2bs-N may be important in the modulation by TNFR2 of signaling through coexpressed TNFR1.  相似文献   

15.
The role of tumor necrosis factor (TNF) receptor-associated factor (TRAF)-1 in NF-kappaB activation by various members of the TNF receptor family is not well understood, and conflicting data have been published. Here, we show that TRAF1 differentially affects TRAF2 recruitment and activation of NF-kappaB by members of the TNF receptor family. Interestingly, a naturally occurring caspase-derived cleavage product of TRAF1 solely comprising its TRAF domain (TRAF1-(164-416)) acted as a general inhibitor of NF-kappaB activation. In contrast, a corresponding fragment generated by cleavage of TRAF3 showed no effect in this regard. In accordance with these functional data, TRAF1, but not TRAF3, interacted with the IKK complex via its N-TRAF domain. Endogenous TRAF1 and the overexpressed TRAF domain of TRAF1 were found to be constitutively associated with the IKK complex, whereas endogenous receptor interacting protein was only transiently associated with the IKK complex upon TNF stimulation. Importantly, the caspase-generated TRAF1-fragment, but not TRAF1 itself inhibited IKK activation. Our results suggest that TRAF1 and TRAF1-(164-416) exert their regulatory effects on receptor-induced NF-kappaB activation not only by modulation of TRAF2 receptor interaction but especially TRAF1-(164-416) also by directly targeting the IKK complex.  相似文献   

16.
Sequestosome 1/p62 is a scaffolding protein with several interaction modules that include a PB1 dimerization domain, a TRAF6 (tumor necrosis factor receptor-associated factor 6) binding site, and a ubiquitin-associating (UBA) domain. Here, we report that p62 functions to facilitate K63-polyubiquitination of TRAF6 and thereby mediates nerve growth factor-induced activation of the NF-kappaB pathway. In brain of p62 knock-out mice we did not recover polyubiquitinated TRAF6. The UBA domain binds polyubiquitin chains and deletion of p62-UBA domain or mutation of F406V within the ubiquitin binding pocket of the UBA domain abolished TRAF6 polyubiquitination. Likewise, deletion of p62 N-terminal dimerization domain or the TRAF6 binding site had similar effects on both polyubiquitination and oligomerization of TRAF6. Nerve growth factor treatment of PC12 cells induced TRAF6 polyubiquitination along with formation of a p62-TRAF6-IKKbeta-PKC iota signal complex, while inhibition of the p62/TRAF6 interaction had an opposite effect. These results provide evidence for a mechanism whereby p62 serves to regulate the NF-kappaB pathway.  相似文献   

17.
TNF-induced activation of stress activated protein kinases (SAPKs, Jun NH2-terminal kinases) requires TNF receptor associated factor 2 (TRAF2). TRAF2 is a potent activator of a 95-kDa serine/threonine kinase termed germinal center kinase related (GCKR, also referred to as KHS1), which signals activation of the SAPK pathway. Consistent with a role for GCKR in TNF- induced SAPK activation, a kinase-inactive mutant of GCKR is a dominant negative inhibitor of TRAF2-induced SAPK activation. Here we show that TRAF2 interacts with GCKR. This interaction depended upon the TRAF domain of TRAF2 and the C-terminal 150 aa of GCKR. The full activation of GCKR by TRAF2 required the TRAF2 RING finger domain. TNF treatment of a T cell line, Jurkat, increased both GCRK and SAPK activity and enhanced the coimmunoprecipitation of GCKR with TRAF2. Similar results were found with the B cell line HS-Sultan. These findings are consistent with a model whereby TNF signaling results in the recruitment and activation of GCKR by TRAF2, which leads to SAPK activation.  相似文献   

18.
Signaling through CD40 in B cells leads to B cell proliferation, Ig and IL-6 secretion, isotype switching, and up-regulation of surface molecules. TNF receptor-associated factor (TRAF) proteins associate with the cytoplasmic tail of CD40 and act as adapter molecules. Of the six TRAFs identified to date, TRAFs 2, 3, 5, and 6 are reported to associate directly with the cytoplasmic tail of CD40, but previous studies have principally examined transient overexpression of TRAF6 in cells that do not normally express CD40. Thus, we examined the role of TRAF6 in CD40-mediated B lymphocyte effector functions using two approaches. We produced and stably expressed in mouse B cell lines a human CD40 molecule with two cytoplasmic domain point mutations (hCD40EEAA); this mutant fails to bind TRAF6, while showing normal association with TRAFs 2 and 3. We also inducibly expressed in B cells a transfected "dominant-negative" TRAF6 molecule which contains only the C-terminal TRAF-binding domain of TRAF6. Using both molecules, we found that TRAF6 association with CD40 is important for CD40-induced IL-6 and Ig secretion, and that TRAF6 mediates its effects on CD40-stimulated Ig secretion principally through its effects on IL-6 production by the B cell. TRAF6 association with CD40 was also found to be important for B7-1 up-regulation, but not for up-regulation of other surface molecules. Interestingly, however, although we could show TRAF6-dependent CD40-mediated activation of NF-kappaB in 293 kidney epithelial cells, no such effect was seen in B cells, suggesting that TRAF6 has cell-type-specific functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号