首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(+)-Isoepoxydon has been established as the major causative agent of interference competition between Poronia punctata (NRRL 6457), a late fungal colonist of cattle dung, and two early-occurring dung colonists, Ascobolus furfuraceus (NRRL 6460) and Sordaria fimicola (NRRL 6459). This compound was isolated from ethyl acetate extracts of liquid cultures of P. punctata by silica gel chromatography and identified by mass spectrometry and proton and carbon nuclear magnetic resonance spectroscopy. The isolation process was guided by in vitro bioassays for antifungal activity against A. furfuraceus and S. fimicola. (+)-Isoepoxydon has been implicated as an intermediate in the biosynthesis of patulin, a mycotoxin produced by Penicillium spp., but no patulin could be detected in cultures of P. punctata.  相似文献   

2.
Diversity‐dependent cladogenesis occurs when a colonizing lineage exhibits increasing interspecific competition as it ecologically diversifies. Repeated colonization of a region by closely related taxa may cause similar effects as species within each lineage compete with one another. This may be particularly relevant for secondary colonists, which could experience limited diversification due to competition with earlier, incumbent colonists over evolutionary time. We tested the hypothesis that an incumbent lineage may diminish the diversification of secondary colonists in two speciose clades of Philippine “Old Endemic” murine rodents—Phloeomyini and Chrotomyini—on the relatively old oceanic island of Luzon. Although phylogenetic analyses confirm the independent, noncontemporaneous colonization of Luzon by the ancestors of these two clades, we found no support for arrested diversification in either. Rather, it appears that diversification of both clades resulted from constant‐rate processes that were either uniform or favored the secondary colonists (Chrotomyini), depending on the method used. Our results suggest that ecological incumbency has not played an important role in determining lineage diversification among Luzon murines, despite sympatric occurrence by constituent species within each lineage, and a substantial head start for the primary colonists.  相似文献   

3.
Interspecific combative interactions between wood-decaying basidiomycetes   总被引:17,自引:0,他引:17  
Competition is the most common type of interaction occurring between wood-decaying higher fungi. Since competition for nutrients in organic resources is effectively brought about by competition for space, the common division into interference and exploitation competition is not very appropriate. Fungal competition can be divided into primary resource capture (obtaining uncolonized resources) and secondary resource capture (combat to obtain resources already colonized by other fungi). Combative mechanisms include antagonism at a distance, hyphal interference, mycoparasitism and gross mycelial contact. Interactions can result in deadlock or replacement, and a hierarchy of combative ability can be discerned amongst fungi that inhabit particular resources, but within this hierarchy there exists intransitivity, modification of outcome by other species and abiotic variables. Interactions can dramatically alter mycelial function, and have potential as biological control agents of fungal pathogens of trees and in service timber.  相似文献   

4.
Priority effects are an important ecological force shaping biotic communities and ecosystem processes, in which the establishment of early colonists alters the colonization success of later‐arriving organisms via competitive exclusion and habitat modification. However, we do not understand which biotic and abiotic conditions lead to strong priority effects and lasting historical contingencies. Using saprotrophic fungi in a model leaf decomposition system, we investigated whether compositional and functional consequences of initial colonization were dependent on initial colonizer traits, resource availability or a combination thereof. To test these ideas, we factorially manipulated leaf litter biochemistry and initial fungal colonist identity, quantifying subsequent community composition, using neutral genetic markers, and community functional characteristics, including enzyme potential and leaf decay rates. During the first 3 months, initial colonist respiration rate and physiological capacity to degrade plant detritus were significant determinants of fungal community composition and leaf decay, indicating that rapid growth and lignolytic potential of early colonists contributed to altered trajectories of community assembly. Further, initial colonization on oak leaves generated increasingly divergent trajectories of fungal community composition and enzyme potential, indicating stronger initial colonizer effects on energy‐poor substrates. Together, these observations provide evidence that initial colonization effects, and subsequent consequences on litter decay, are dependent upon substrate biochemistry and physiological traits within a regional species pool. Because microbial decay of plant detritus is important to global C storage, our results demonstrate that understanding the mechanisms by which initial conditions alter priority effects during community assembly may be key to understanding the drivers of ecosystem‐level processes.  相似文献   

5.
We analyzed the ecological conditions that may favor a habitat selection process in which later arriving individuals (colonists) use the presence of earlier established species (residents) as a cue to profitable breeding sites (heterospecific attraction). In our model, colonists assessing potential breeding patches could select between high-quality source and low-quality sink patches. A proportion of the source patches were occupied by residents. Colonists could either directly sample the relative quality of the patches (termed samplers) or, alternatively, they could also use residents as a cue of patch quality (cue-users). Cue-users gained benefit from lowered costs when assessing occupied source patches. The cue-using strategy is an efficient way to choose the best possible patch not only when interspecific competition is intense, but also when benefits from social aggregation exceed the effects of competition. High relative cost of sampling empty patches increases the fitness of the cue-using strategy relative to samplers. The strongest attraction to heterospecifics was predicted when the benefit from aggregating with residents exceeded the effects of competition, and approximately half of the landscape consisted of occupied, high-quality source patches.  相似文献   

6.
Existing radiations in a spatially limited system such as an oceanic island may limit the ecological opportunity experienced by later colonists, resulting in lower macroevolutionary rates for secondary radiations. Additionally, potential colonists may be competitively excluded by these incumbent (resident) species, unless they are biologically distinct (biotic filtering). The extant phenotypic diversity of secondary colonists may thus be impacted by lower rates of phenotypic evolution, exclusion from certain phenotypes, and transitions to new morphotypes to escape competition from incumbent lineages. We used geometric morphometric methods to test whether the rates and patterns of mandibular evolution of the Luzon “old endemic” rodent clades, Phloeomyini and Chrotomyini, are consistent with these predictions. Each clade occupied nearly completely separate shape space and partially separate size space. We detected limited support for decelerating and clade‐specific evolutionary rates for both shape and size, with strong evidence for a shift in evolutionary mode within Chrotomyini. Our results suggest that decelerating phenotypic evolutionary rates are not a necessary result of incumbency interactions; rather, incumbency effects may be more likely to determine which clades can become established in the system. Nonincumbent clades that pass a biotic filter can potentially exhibit relatively unfettered evolution.  相似文献   

7.
Nara K 《The New phytologist》2006,169(1):169-178
Ectomycorrhizal (ECM) fungal mycelia are the main organs for nutrient uptake in many woody plants, and often connect seedlings to mature trees. While it is known that resources are shared among connected plants via common mycorrhizal networks (CMNs), the net effects of CMNs on seedling performance in the field are almost unknown. CMNs of individual ECM fungal species were produced in an early succession volcanic desert by transplanting current-year seedlings of Salix reinii with ECM mother trees that had been inoculated with one of 11 dominant ECM fungal species. Most seedlings were connected to individual CMNs without being infected by other ECM fungi. Although control seedlings showed poor growth under severe nutrient competition with larger nonmycorrhizal mother trees, nutrient acquisition and growth of seedlings connected to CMNs were improved with most fungal species. The positive effects of CMNs on seedling performance were significantly different among ECM fungal species; for example, the maximum difference in seedling nitrogen acquisition was 1 : 5.9. The net effects of individual CMNs in the field and interspecific variation among ECM fungal species are shown.  相似文献   

8.
T. A. Dean  L. E. Hurd 《Oecologia》1980,46(3):295-301
Summary Experiments were performed to determine if earlier colonists inhibited, enhanced, or were necessary for establishment of later colonists during development of an estuarine fouling community at Lewes, Delaware. We determined the significance of earlier stages on the successional process by functionally removing early colonizing species. Since settlement of sessile invertebrates onto our experimental test plates was seasonal, we were able to accomplish functional removal of early colonists by putting out clean test panels after these species had ceased settling. Comparisons between panels initially submerged at three different times in 1974 and 1975, and between panels put out at one-month intervals throughout the study (to describe seasonal settlement patterns) allowed us to determine interactions between adult populations of earlier colonists and colonizing individuals of later arriving species.The dominant sessile species in our system and their times of settlement were: a barnacle (Balanus improvisus) — April through June, a polychaete (Hydroides dianthus) — July and August, a tunicate (Molgula manhatensis) — June through October, a hydroid (Tubularia crocea) — July through October, and a mussel (Mytilus edulis) — November through April. All successional series eventually came to be dominated by M. edulis, and it persisted as the dominant for over a year.A variety of species interactions were observed. M. edulis inhibited colonization by all other dominants and B. improvisus partially inhibited settlement of M. manhattensis. The presence of adult M. manhattensis had no influence on summer settlement of T. crocea, but the hydroids enhanced settlement of tunicates in the fall. During both years of our study, larger settlements of mussels were noted on panels harboring tunicates and hydroids than on bare surfaces. H. dianthus, on the other hand, became established only on bare substrates, and colonization was almost totally inhibited by other dominants.Development in our fouling community did not conform to any single model of community development presented to date. Instead, components of several models were observed within our relatively simple (in terms of number of species) system. For example, facilitation (enhancement of later colonists by earlier ones) and inhibition (resistance of earlier colonists to invasion by later colonists) were both observed. However, we found no evidence earlier colonists were essential for establishment of the next developmental stage. In fact, inhibitory interactions appeared to be much more prevalent than facilitative interactions. The former may also have more profound effects on community development since they more often determine eventual species compositions.  相似文献   

9.
Evolutionary theory predicts that hosts are selected to prevent mixing of genetically different symbionts when competition among lineages reduces the productivity of a mutualism. The symbionts themselves may also defend their interests: recent studies of Acromyrmex leaf-cutting ants showed that somatic incompatibility enforces single-clone gardens within mature colonies, thereby constraining horizontal transmission of fungal symbionts. However, phylogenetic analyses indicate that symbiont switches occur frequently enough to remove most signs of host-symbiont cocladogenesis. Here we resolve this paradox by showing that transmission among newly founded Acromyrmex colonies is not constrained. All tested queens of sympatric A. octospinosus and A. echinatior offered a novel fragment of fungus garden accepted the new symbiont. The outcome was unaffected by genetic distance between the novel and the original symbiont, and by the ant species the novel symbiont came from. The colony founding stage may thus provide an efficient but transient window for horizontal transmission, in which the fungus is unable to actively defend its partnership position before the host feeds on it, so that host fecal droplets remain compatible with alternative strains during the early stage of colony founding. We discuss how brief stages of low commitment between partners may increase the evolutionary stability of ancient coevolved mutualisms.  相似文献   

10.
Milesi  Silvia V.  Melo  Adriano S.  Dolédec  Sylvain 《Hydrobiologia》2019,838(1):183-192

Initial colonists of empty habitats tend to differ from those arriving later in terms of species identity and traits. We evaluated the dynamics of the functional attributes in aquatic insect communities during a colonization experiment under natural conditions. We tested whether the late stages of colonization show higher functional richness, diversity and specialization than early successional stages. We used 60 artificial slate samplers that were removed after 1, 3, 5, 10, 15 and 30 days of colonization. We considered five traits (with a total of 17 trait categories): feeding habits, dispersal medium, body size, body shape and locomotion. With these traits, we computed a global specialization index at the community level. Large shredders with a cylindrical body shape and fly dispersal while flying were prominent in late colonization. In contrast, early colonists tended to have flattened body and to disperse through water. Functional diversity and functional richness significantly increased in late colonization, resulting in a more specialized community. Our results suggest that any interference during the processes involved in stream insect colonization can be reflected in the community through the decrease or even lack of functional attributes.

  相似文献   

11.
Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities.  相似文献   

12.
Fifteen out of 50 species of ascid mites (30%) that we collected from four synanthropic and seven natural habitats in North America and Australia existed as all-female populations. In contrast to the predictions of the biotic uncertainty hypothesis (i.e. that parthenogenetic species are rare, restricted in distribution and survive through dispersal ability), we found that parthenogentic ascid mites were present in ten out of 11 habitats sampled, but were not superior colonists. In a glasshouse experiment, pasteurized soil in pots was colonized first by bisexual species and only later by all-female species. Furthermore, a habitat requiring strong dispersal abilities (decaying fungal sporocarps) lacked parthenogenetic species and a review of literature and collections indicated that all-female ascid species rarely form the phoretic associations with insects necessary to exploit patchy and ephemeral resources. The assumptions that parthenogens are reproductively superior to but competitively inferior to sexual relatives were not supported by experiments comparing a bisexual and an all-female species of Lasioseius.  相似文献   

13.
Sexually and asexually derived tillers of Anthoxanthum odoratum were planted directly in the field to test the hypothesis that competition among groups of sexual and asexual siblings favors the maintenance of sexual reproduction in populations. The results showed a substantial fitness advantage for sexual tillers. However, in contrast with the models, the advantage of sex did not increase with increasing numbers of colonists in the patch, there were multiple survivors among colonists, and an advantage was observed even for singly planted tillers. When a truncation-selection scheme was imposed ex post facto on the data, the relative performance of sexual tillers was similar to that predicted by the Bulmer (1980) model, suggesting that sib-competition models fail due to the violation of the assumption of truncation selection. The advantage of sex was not correlated with the presence of other species, total percentage cover, or species diversity, although sites where sex was favored were physically clustered.  相似文献   

14.
In vitro tests were carried out to verify the activity of 26 Brazilian isolates of predatory fungi of the genus Arthrobotrys on a free-living nematode (Panagrellus sp.) and on infective larvae of Cooperia punctata, a parasitic gastrointestinal nematode of cattle. The results showed that the free-living nematode Panagrellus sp. was the most preyed upon, compared to C. punctata, for all the fungal treatments. Also, variable predatory capacity was observed for different fungal isolates belonging to the same genus when applied to different nematode species.  相似文献   

15.
《Mycoscience》2014,55(4):308-313
A new species, Mortierella thereuopodae, is described for a fungus sporulating on fecal pellets of the centipede Thereuopoda clunifera (Chilopoda). The species produces large cymosely to verticillately branched sporangiophores on well-developed rhizoids with the formation of chlamydospore clusters.  相似文献   

16.
Food niche overlap among neotropical frugivorous bats in Costa Rica   总被引:1,自引:0,他引:1  
Food habits of 15 species of frugivorous bats were studied at La Selva Biological Station, Costa Rica. Eight hundred and fifty-four (854) fecal samples and 169 samples from fruit parts and seeds discarded by bats beneath feeding roosts were analyzed. During eight months of study, 47 fruit species consumed by bats were identified. Five plant genera (Cecropia, Ficus, Piper Solanum, and Vismia) constituted 85% of all plants found in fecal samples. Feeding niche breadth differed significantly among the six most common species of frugivorous bats (Artibeus jamaicensis, Carollia sowelli, C. castanea, C. perspicillata, Dermanura sp., and Glossophaga commissarisi). All species, except for Dermanura sp., showed a diet dominated by one or two plant species. This suggests a pattern of resource partitioning at a generic level, in which Carollia consumed mainly Piper, Artibeus consumed Ficus and Cecropia, and Glossophaga consumed Vismia. Cluster analysis revealed higher values of food niche overlap in congeneric species than among species of different genera. Results show that if food is a limiting factor, mechanisms other than trophic selection must reduce interspecific interference or competition for food in this frugivorous bat guild.  相似文献   

17.
Resource competition and chemical interference are mechanisms of interaction among plants that may occur simultaneously. However, both mechanisms are rarely considered together when modelling plant growth. We propose a new empirical model that estimates biologically significant parameters on both plant competition and chemical interference. The model is tested with data sets from different density-dependent experiments done with two species (the grass Lolium rigidum Gaud. and the legume Glycine max soya L.) subjected to a noxious chemical environment when growing (allelochemicals and herbicides, respectively). Hypotheses on the effect of allelochemicals and its interaction with density are tested using maximum likelihood ratio tests in order to ask, for these species, whether chemical interference is playing a significant role in the interactions among plants or on the contrary, whether interactions among plants are sufficiently explained by the resource competition. In all cases a significant interaction between chemicals and density is observed. This interaction is inconsistent with the hypothesis of only resource competition having an influence of plant biomass and suggests a significant density-dependent effect of chemicals on plant growth.  相似文献   

18.
Invaders into established communities must overcome low resource availability. To establish, invaders must either appropriate resources from existing individuals through interference competition or efficiently use the small amount of resource that remains. Although both strategies may be important, they are rarely considered together and, in particular, resource‐use efficiency is often ignored in systems dominated by interference competition. To identify the traits that confer invasion success, we experimentally invaded resource patches in established communities with multiple species from two functional groups that differ in interference competitive ability and resource‐use efficiency. In contrast to previous assessments, we show that resource‐use efficiency can facilitate invasion in systems dominated by interference competition. Furthermore, large resource requirements can be a liability when establishing because interference competition is inherently costly and so cannot fully compensate for limitations in the primary resource. However, we also show that there is a tradeoff in performance among functional groups between small and large resource gaps. Our results suggest we modify the way we view and manage species invasion in systems dominated by interference competition.  相似文献   

19.
Scarcity of resources may result in high levels of animal aggregation; interference competition can occur in such a scenario and play a role in resource acquisition. Here, we test the hypothesis that animals could minimize interference competition by shifting their temporal niches in relation to competitors. In Hwange National Park, Zimbabwe, we monitored waterholes in order to study agonistic interactions between elephants and other herbivore species. We also used a long-term data set from a yearly survey of waterhole attendance by herbivores to evaluate the influence of the presence of elephants on the use of waterholes by other herbivore species. Our results show that in drier years, waterholes are crowded with elephants early in the afternoon. In general, the species most affected by interference competition with elephants shift their temporal niches at the waterholes, thus maintaining a constant temporal overlaps with elephants. The species less affected by interference competition with elephants show no temporal niche shifts and increase their temporal overlap with elephants at waterholes, as predicted from a noncompetition hypothesis. This study provides evidence that interference competition with a behaviorally dominant large species influences the temporal niches of smaller species, and suggests that the potential costs associated with interference between elephants and other herbivores at waterholes are linked to shifts in diurnal activities rather than interactions and water acquisition itself.  相似文献   

20.
Exotic species are sometimes phenologically distinct from native species in the invaded community, allowing them to be active when there may be reduced competition for resources. In southern California, annual species are particularly problematic invaders, and prior work has shown that these species germinate earlier in the growing season, giving them a competitive advantage over later‐germinating native species. This result begs the question, if being active earlier is advantageous, why have not native species adapted earlier cues for germination? We hypothesized native species would benefit less from earlier germination than exotic species (potentially due to slower growth following germination), thus negating potential selection for early germination. Here we manipulated planting time for common native and exotic species, growing them in all possible species pairs, to evaluate how competitive outcomes were altered by the time of arrival and the origin of competing species. In contrast to our hypotheses, the exotic species often had lower biomass when planted first, potentially due to disturbance when the second species was planted. In contrast, three out of our four native species benefited from earlier planting (a priority effect). Unlike the potential benefit of arriving early, we found no evidence that being planted one week later resulted in a competitive disadvantage, when compared to being planted simultaneously with a competitor. Further, we found that the magnitude and even direction of priority effects varied depending on the identity of the interacting species. Together these results suggest that a lack of directional selection may prevent adaptation towards earlier germination times of native species. Although this experiment was conducted with a limited suite of species, the results show that the role of seasonal priority effects varies among species, and that native species could benefit from seasonal priority effects in restoration efforts even when in competition with fast‐growing exotic annual species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号